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Lizardtech DjVu Reference 
DjVu v3 

Document Date: November 2005 
From:   Lizardtech, a Celartem Company 
Status of Standard: Released 

1 Introduction 
Although the Internet has given us a worldwide infrastructure on which to build the 
universal library, much of the world knowledge, history, and literature is still trapped on 
paper in the basements of the world's traditional libraries. Many libraries and content 
owners are in the process of digitizing their collections. While many such efforts involve 
the painstaking process of converting paper documents to computer-friendly form, such 
as SGML based formats, the high cost of such conversions limits their extent. Scanning 
documents and distributing the resulting images electronically is not only considerably 
cheaper, but also more faithful to the original document because it preserves its visual 
aspect.  

Despite the quickly improving speed of network connections and computers, the number 
of scanned document images accessible on the Web today is relatively small. There are 
several reasons for this.  

The first reason is the relatively high cost of scanning anything else but unbound sheets 
in black and white. This problem is slowly going away with the appearance of fast and 
low-cost color scanners with sheet feeders.  

The second reason is that long-established image compression standards and file formats 
have proved inadequate for distributing scanned documents at high resolution, 
particularly color documents. Not only are the file sizes and download times impractical, 
the decoding and rendering times are also prohibitive. A typical magazine page scanned 
in color at 100 dpi in JPEG would typically occupy 100 KB to 200 KB, but the text 
would be hardly readable: insufficient for screen viewing and totally unacceptable for 
printing. The same page at 300 dpi would have sufficient quality for viewing and printing, 
but the file size would be 300 KB to 1000 KB at best, which is impractical for remote 
access. Another major problem is that a fully decoded 300 dpi color images of a letter-
size page occupies 24 MB of memory and easily causes disk swapping.  

The third reason is that digital documents are more than just a collection of individual 
page images. Pages in a scanned document have a natural serial order. Special provision 
must be made to ensure that flipping pages be instantaneous and effortless so as to 
maintain a good user experience. Even more important, most existing document formats 
force users to download the entire document first before displaying a chosen page. 
However, users often want to jump to individual pages of the document without waiting 
for the entire document to download. Efficient browsing requires efficient random page 
access, fast sequential page flipping, and quick rendering. This can be achieved with a 
combination of advanced compression, pre-fetching, pre-decoding, caching, and 
progressive rendering. DjVu decomposes each page into multiple components (text, 
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backgrounds, images, libraries of common shapes...) that may be shared by several pages 
and downloaded on demand. This allows a suitably designed DjVu-viewing application 
to to handle on-demand downloading, pre-fetching, decoding, caching, and progressive 
rendering of the page images.  

2 Document Organization 
This document describes the DjVu File Format.  It is written “from top down” providing 
first a high-level understanding of the features and techniques used in DjVu (see 
Overview), then a mid-level view at the IFF85 level (see Component pieces), and finally a 
very detailed decription of the underlying algorithms and and byte-by-byte makeup of 
DjVu files (see Low-level chunk structure and the Appendices). 

3 Overview 
This section describes the DjVu file format at a high level:  how DjVu uses the Mixed 
Raster Content model, how images are composed into documents and the non-raster data 
that such documents can also contain. 

3.1 DjVu Images 
The principal imaging model used in DjVu is the “Mixed Raster Content” (MRC) model 
described in ITU-T Recommendation T.44, ISO/IEC 16485.  In this model, an image is 
decomposed into foreground and background layers.  To select whether a particular pixel 
comes from the foreground or background a bitonal “selection” or “mask” layer is 
provided.  These three layers are compressed separately using techniques which are 
optimized for each type of data. 

The foreground and background layers are compressed using a wavelete-based continous-
tone image compression technique known as IW44. 

The mask layer is compressed using a bitonal image compression technique that takes 
advantage of repetitions of nearly identical shapes on the page (such as characters) to 
efficiently compress text images. 

A DjVu image need not contain all three layers and alternative compression techniques 
are available for each layer. 

3.2 DjVu Documents 
DjVu Documents can be single- or multi-page.  Each page consists of a DjVu image as 
described above (photo, bitonal or an MRC-based composition).  Such a page, by itself is 
a valid DjVu Document.  Multipage Documents can take either of two forms:  Bundled or 
Indirect. 

3.2.1 Bundled multi-page documents 
Bundled multi-page DjVu document uses a single file to represent the entire document. 
This single file contains all the pages as well as ancillary information (e.g. the page 
directory, data shared by several pages, thumbnails, etc.). Using a single file format is 
very convenient for storing documents or for sending email attachments.  
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3.2.2 Indirect multi-page documents 
 

There are problems inherent to storing multiple pages in a single file.  A viewer may not 
be able to utilize a byte-serving mechanism such that that available in HTTP1.1.  
Therefore any request for any page of such a file will necessarily result in the entire 
document being transmitted.  Furthermore, a reasonable work pattern is to read the first 
few pages (perhaps a Table of Contents) and then navigate to a page much further into 
the document.  However, in such a file, data for page 100 can not be viewed until after 
data for pages 1-99 have been downloaded. 

Indirect multipage documents address these problems.  Such a document is composed of 
several files. The main file is named the index file. You can view document using the 
URL of the index file, just like you do with a bundled multi-page document. However, the 
index file is very small. It simply contains the document directory and the URLs of 
secondary files containing the page data. When you view an indirect multi-page 
document, the viewer only needs to download the files corresponding to the pages you 
are viewing.  

3.3 Non-raster Data 

3.3.1 Annotations 
Every DjVu image optionally includes several different kinds of annotations. These 
annotations are often used to define hyper-links to other document pages or to arbitrary 
web pages. They can also be used for other purposes such as setting the initial viewing 
mode of a page and defining highlighted zones. 

3.3.2 Hidden text 
Every DjVu image optionally includes a hidden text layer that associated graphical 
features with the corresponding text. The hidden text layer is usually generated by 
running Optical Character Recognition software. This textual information provides for 
indexing DjVu documents and copying/pasting text from DjVu page images.    

3.3.3 Thumbnails 
DjVu documents sometimes contain pre-computed page thumbnails.  These allow a 
viewer to display a graphical representation of many pages by downloading a very small 
“thumbnail” file instead of the actual pages themselves. 

4 What’s new in DjVu File Format  
Since the last update to the file format documentation, Reference 1, the file format has 
been extended to include 

• Multipage formats.  DjVu documents can span more than one page.  There are 
two multipage formats available:  bundled (single file) and indirect (separate files 
for each page; see DjVu Documents and Multipage Documents) 



Release Copy 

Page 4 of 71 

• Annotations.  Both initial viewing parameters (background color, initial zoom) 
and overlayed annotations (hyperlinks, text boxes) can be specified either at the 
document level (“shared”) or at the page level.  See Annotation Chunk. 

• Hidden Text.  Text and the associated layout information can be stored as with 
each image.  This allows documents to be searched and indexed.  See Text Chunk. 

• Document Outline.  A heirarchical outline can be specified at the document level.  
This allows the document to contain present an integrated outline for overview 
and navigation.  See Document Outline Chunk. 

• Colorized JB2.  A palettized extension is provided for the bitonal encoder.  See 
Foreground Color JB2 Chunk.  

5 Acknowledgements 
This work is significantly based on Reference 1 and the summary of file format changes 
described in the DjVuLibre project maintained by Leon Bottou and others. 

6 References 

6.1 DjVu 2 
The DjVu File Format specification that was originally released by AT&T in 1999. 
http://www.djvuzone.org/djvu/djvu/djvuspec/001.djvu 

6.2 IFF 
EA IFF 85 format, Electronic Arts' public domain IFF standard for Interchange File  

Format, released in January, 1985. 

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/IFF.txt 

6.3 JPEG 
JPEG File Interchange Format, Version 1.02 (ISO DIS 10918-1, JPEG JFIF). The 
specification is located at http://www.w3.org/Graphics/JPEG/jfif.txt. 

6.4 Tiff 
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf. 

6.5 G4 
ITU-T (CCITT) T.6. Facsimile Coding Schemes and Coding Control Functions for 
Group 4 Facsimile Apparatus 

6.6 UTF8 
All text in DjVu files is Unicode encoded using the UTF8 encoding. 

http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf 
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6.7 DjVuLibre 
An open source reference implementation of this file format specification is available at 
http://sourceforge.net/projects/djvu/.   Throughout this specification, there are numerous 
references to source files in this implementation. 

7 Component pieces (IFF chunks) of DjVu documents 
and images 

This section describes the DjVu file format at a middle level.  This includes types of 
chunks which can go into various types of documents but not a detailed layout of the 
contents of those chunks. 

DjVu documents are IFF85 files (see reference 2 for details).  The IFF85 structure 
provides a hierarchy of containers which hold various types of information in a DjVu file.  
The containers are called “chunks.”  How the chunk is used (what it holds) can be 
determined by its “chunk type” or “chunk id.” For example, the list of files contained in a 
multipage document is held in the “DIRM” (“directory”) chunk, annotations are held in a 
“ANTz” chunk. 

“FORM” chunks are composite (contain other chunks).  Their specific use is exposed by 
a secondary chunk ID.  For example a single page consists of several different chunks all 
contained within a single “FORM:DJVU” chunk.  A multipage document consists of 
several pages (and other chunks) all contained in a “FORM:DJVM” chunk. 

This section discusses the various kinds of DjVu documents and the corresponding 
chunks of which they consist. 

7.1 Single Page Documents 
A Single Page Document is composed of a single "FORM:DJVU" composite chunk. This 
composite chunk always begins with one “INFO” chunk describing the image size, 
resolution and related information (see Document Info Chunk).  The document containts 
exactly one DjVu Image whose content varies as described below. 

7.1.1 Photo DjVu Image  
Photo DjVu Image files are best used for encoding photographic images in colors or in 
shades of gray.  The data compression model relies on the IW44 wavelet representation.  
This format is designed such that the IW44 decoder is able to quickly perform 
progressive rendering of any image segment using only a small amount of memory.  One 
or more additional "BG44" chunks contain the image data encoded with the IW44 
representation.  The image size specified in the "INFO" chunk and the image size 
specified in the IW44 data must be equal. 

7.1.2 Bi-level DjVu Image  
Bilevel DjVu Image files are used to compress black and white images representing text 
and simple drawings.   The JB2 data compression model uses the soft pattern matching 
technique, which essentially consists of encoding each character by describing how it 
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differs from a well-chosen already-encoded character.  A “Sjbz” chunk contains the 
bilevel data encoded with the JB2 representation (see appendix 2).  The image size 
specified in the “INFO” chunk and the image size specified in the JB2 data must be equal. 

7.1.3 Compound DjVu Image  
Compound DjVu Files are an extremely efficient way to compress high resolution 
Compound document images containing both pictures and text, such as a page of a 
magazine.  Compound DjVu Files represent the document images using two layers.  The 
background layer is used for encoding the pictures and the paper texture. 

The foreground layer is used for encoding the text and the drawings.  Additional chunks 
hold the components of either the foreground or the background layers. 

The main component of the foreground layer is a bilevel image named the foreground 
mask. The pixel size of the foreground mask is equal to the size of the DjVu image.  It 
contains a black-on-white representation of the text and the drawings.  This image is 
encoded by a “Sjbz” chunk using the JB2 representation.  There may also be a companion 
chunk “Djbz” containing a shape dictionary that defines bilevel shapes referenced by the 
“Sjbz” chunk. 

7.1.3.1 Foreground Encoding 
The foreground colors can be encoded according to two models:  

The foreground colors may be encoded using a small color image, the foreground color 
image, encoded as a single “FG44”   chunk using the IW44 representation (see 
IW44Image.h).  Such compound DjVu images are rendered by painting the foreground 
color image on top of the background color image using the foreground mask as a stencil.  
The pixel size of the foreground color image is computed by rounding up the quotient of 
the mask size by an integer sub-sampling factor ranging from 1 to 12.  Most Compound 
DjVu Images use a foreground color sub-sampling factor of 12.  Smaller sub-sampling 
factors produce very slightly better images. 

The foreground colors may be encoded by specifying one solid color per object described 
by the JB2 encoded mask. These JB2 colors are color-quantized and stored in a single 
“FGbz” chunk (see section 6.3.10).  Such compound DjVu images are rendered by 
painting each foreground object on top of the background color image using the solid 
color specified by the “FGbz” chunk. 

7.1.3.2 Background Encoding 
The background layer is a color image, the background color image encoded by an 
arbitrary number of “BG44” chunks containing successive IW44 refinements (see 
appendix 1).  The size of this image is computed by rounding up the quotient of the mask 
size by an integer sub-sampling factor ranging from 1 to 12.  Most Compound DjVu 
Images use a background sub-sampling factor equal to 3.  Smaller sub-sampling factors 
are adequate for images with a very rich paper texture.  Larger sub-sampling factors are 
adequate for images containing no pictures. 
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There are no ordering or interleaving constraints on these chunks except that (a) the 
“INFO” chunk must appear first, and (b) the successive “BG44” refinements must appear 
with their natural order.  The chunk order simply affects the progressive rendering of 
DjVu images on a web browser.   

7.1.3.3 Alternative encodings  
Besides the JB2 and IW44 encoding schemes, the DjVu format supports alternative 
encoding methods for its components.   

The foreground mask may be represented by a single “Smmr” chunk instead of “Sjbz”.  
The “Smmr” chunk contains a bilevel image encoded with the Fax-G4/MMR method.  
Although the resulting files are typically six times larger, this capability can be useful 
when DjVu is used as a front-end for fax machines and scanners with embedded Fax-
G4/MMR capabilities.  

The background color image may be represented by a single “BGjp” chunk instead of 
several “BG44” chunks.  The “BGjp” chunk contains a JPEG encoded color image (see 
JPEGDecoder.cpp).  The resulting files are significantly larger and lack the progressivity 
of the usual DjVu files.  This is useful because some scanners have embedded JPEG 
capabilities. 

The foreground color image may be represented by a single “FGjp” chunk instead of a 
single “FG44” chunk.  This is useful because some scanners have embedded JPEG 
capabilities. 

7.1.3.4 Annotations and Textual Information 
All types of DjVu images may contain annotation chunks.  Annotation chunks are used to 
describe hyperlinks, to specify more viewer settings (page background, initial zoom, etc), 
and to hold metadata information.  Annotations are contained in “ANTa” or “ANTz” 
chunks.   

All types of DjVu image files may also contain a computer readable description of the 
text appearing on the page.  This information is contained by either a “TXTa” chunk or 
“TXTz” chunk.  

7.2 Multipage Documents 
A multipage document is composed of a “FORM:DJVM” whose first chunk is a “DIRM” 
chunk containing the document directory.  This directory lists all component files 
composing the given document, helps to access every component file and identify the 
pages of the document. 

In a bundled multipage file, the component files are stored immediately after the “DIRM” 
chunk, within the “FORM:DJVM” composite chunk.   

In an indirect multipage file, the component files are stored in different files whose URLs 
are composed using information stored in the “DIRM” chunk. 
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7.2.1 Component files 
A multipage DjVu document necessarily references other FORM (composite) chunks.  
Specifically 

• Each page is single page document (FORM:DJVU chunk). 

• Embedded thumbnails (if any) are contained in one or more FORM:THUM 
chunks 

• Shared annotations (if any) and shape dictionaries (if any) are contained in one or 
more FORM:DJVI chunks. 

Each of these composite chunks (FORM:DJVU, FORM:THUM, FORM:DJVI) is a well-
formed IFF bytestream in its own right and can be held in a separate disk file.  In the 
context of a multipage – either bundled or indirect – document, we refer to these 
composite chunks as component files. 

7.2.2 Including shared information 
In many cases, efficiencies can be achieved by sharing JB2 shape definitions and/or 
annotations across pages.  To facilitate this, any DjVu image file contained in a multipage 
file may contain an “INCL” chunk containing the ID of a shared component file.  The 
decoder processes the chunks contained in the shared component file as if the DjVu 
image file contained them.    All relevant pages include this shared component file.  
Although they appear in several pages, these shared shapes are encoded only once in the 
document. 

A shared component file is composed of a single “FORM:DJVI” potentially containing 
any information otherwise allowed in a DjVu image file (except for the “INFO” chunk of 
course). 

8 Low-level chunk structure and definition 
This section describes the DjVu file format at a low level.  This includes the binary 
layout of the IFF85 wrapper and, of course, the layout of each contained chunk. 

8.1 Header 
The first four bytes of a DjVu file are 0x41 0x54 0x26 0x54. This preamble is not part of 
the EA IFF 85 format, but it is required in order to identify DjVu files. 

8.2 DjVu File structure 

8.2.1 IFF Wrapper 
An IFF file consists of a number of chunks. Each chunk is laid out in 3 fields: 

BYTE*4 Chunk ID.  Describes the use of the chunk.  The strings that identify 
the types of chunks used in DjVu are listed below. 

INT32 Length (MSB first).  The length of the Data 
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BYTE[length] The data to be contained. 

A chunk whose type is not recognized by the application is to be ignored. In the IFF 
format, chunks may be nested: a chunk may contain other chunks as part of its data. In 
the DjVu format, there is only one chunk at the outermost nesting level, a FORM chunk. 
All other chunks appear within the FORM chunk, sequentially, with no nesting.  

Each chunk, including those nested within another chunk, must begin on an even byte 
boundary; that is, the number of bytes in the file before the beginning of the chunk must 
be an even integer. If necessary to ensure that a chunk begins on a even byte boundary, a 
single padding byte whose value is 0x00 is placed before a chunk. 

Example: 

0000000: 41 54 26 54  AT&T; magic described in 8.1 

0000004: 46 4f 52 4d FORM; chunkID = FORM 

0000008: 00 00 68 a6 ..h¦ ; (0xA668 = 26790, length of this FORM chunk)  

000000b:  444a 5655  DJVU ; first four bytes of contained data.  Since this is a a FORM 
chunk , this starts with the subidentifier.  This is a FORM:DJVU chunk, a single page 
document. 

8.2.2 Chunk Summary 
The chunks used in the DjVu file format are summarized in Table 1. 
Table 1.  Chunk Summary 

Chunk ID Usage 

FORM The composite chunk.  The first four data bytes of the FORM chunk 
are a secondary identifier. Such chunks are referred to as 
FORM:XXXX where “XXXX” stands for the secondary identifier. 

FORM:DJVM A multipage DjVu document.  Composite chunk that contains the 
DIRM chunk, possibly shared/included chunks and subsequent 
FORM:DJVU chunks which make up a multipage document 

FORM:DJVU A DjVu Page / single page DjVu document.  Composite chunk that 
contains the chunks which make up a page in a djvu document 

FORM:DJVI A “shared” DjVu file which is included via the INCL chunk.  Shared 
annotations, shared shape dictionary.  

FORM:THUM Composite chunk that contains the TH44 chunks which are the 
embedded thumbnails 

DIRM Page name information for multi-page documents 

NAVM Bookmark information 

ANTa, ANTz Annotations including both initial view settings and overlaid 
hyperlinks, text boxes, etc. 

TXTa, TXTz Unicode Text and layout information 
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Djbz Shared shape table. 

Sjbz BZZ compressed JB2 bitonal data used to store mask. 

FG44 IW44 data used to store foreground 

BG44 IW44 data used to store background 

TH44 IW44 data used to store embedded thumbnail images 

WMRM JB2 data required to remove a watermark 

FGbz Color JB2 data.  Provides a color for each (blit or shape?) in the 
corresponding Sjbz chunk. 

INFO Information about the a DjVu page 

INCL The ID of an included FORM:DJVI chunk. 

BGjp JPEG encoded background 

FGjp JPEG encoded foreground 

Smmr G4 encoded mask 

Each chunk is described in detail in the following section 

8.3 IFF Chunk Types 

8.3.1 Container Chunk:  FORM  
The FORM chunk is used as a chunk container.  The first four bytes of the FORM chunk 
are a secondary ID used to identify the chunks being contained. 

8.3.1.1 FORM:DJVM 
As discussed in Multipage Documents, a multipage DjVu Document is contained a single 
(composite) FORM:DJVM chunk.  The first nested chunk is always a “DIRM” chunk 
containing the document directory (see DjVmDir.h) which represents the list of the 
component files that make up the document.  An optional “NAVM” chunk, which 
describes the outline of the document, may follow the “DIRM” chunk. 

Example 
  FORM:DJVM [126475] 
    DIRM [59]         Document directory (bundled, 3 files 2 pages) 
    FORM:DJVI [3493] {dict0002.iff} 
    FORM:DJVU [115016] {p0001.djvu} 
    FORM:DJVU [7869] {p0002.djvu} 

8.3.1.2 FORM:DJVU 
As discussed in Single Page Documents, a single page in a DjVu is contained in a single 
(composite) FORM:DJVU chunk.  The nested first chunk must be the INFO chunk.  The 
chunks after the INFO chunk may occur in any order, although the order of the BG44 
chunks, if there is more than one, is significant. 
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Example: 
  FORM:DJVU [26790] 
    INFO [10]         DjVu 2202x967, v26, 300 dpi, gamma=2.2 
    Sjbz [13133]      JB2 bilevel data 
    FG44 [185]        IW4 data #1, 76 slices, v1.2 (color), 184x81 
    BG44 [935]        IW4 data #1, 74 slices, v1.2 (color), 734x323 
    BG44 [1672]       IW4 data #2, 10 slices 
    BG44 [815]        IW4 data #3, 4 slices 
    BG44 [9976]       IW4 data #4, 9 slices 

8.3.1.3 FORM:DJVI 
Multipage DjVu files can share information between pages by nesting a chunk inside a 
FORM:DjVi chunk (which is itself held inside the FORM:DjVm chunk) and referencing 
the contained chunk from within a page.  Individual pages reference the shared chunks 
via the INCL chunk. 

Example: 
  FORM:DJVM [126475] 
    DIRM [59]         Document directory (bundled, 3 files 2 pages) 
    FORM:DJVI [3493] {dict0002.iff} 
      Djbz [3481]       JB2 shared dictionary 
    FORM:DJVU [115016] {p0001.djvu} 
      INFO [10]         DjVu 2539x3295, v25, 300 dpi, gamma=2.2 
      INCL [12]         Indirection chunk --> {dict0002.iff} 
      Sjbz [70497]      JB2 bilevel data 
... 

8.3.1.4 FORM:THUM 
Pre-rendered Thumbnails may be included.  This allows very large documents to render 
thumbnails of pages without downloading and decoding them.  FORM:THUM chunks 
contain several TH44 chunks.  Each of these chunks contains the thumbnails of the pages 
that follow. 

Example: 
  FORM:DJVM [2272012] 
    DIRM [108]        Document directory (bundled, 7 files 4 pages) 
    FORM:THUM [5960] {p0001.thumb} 
      TH44 [5948]       Thumbnail icon for page 1 
    FORM:DJVU [1413380] {p0001.djvu} 
      INFO [10]         DjVu 4728x6300, v25, 600 dpi, gamma=2.2 
… 
    FORM:THUM [12148] {p0004.thumb} 
      TH44 [3418]       Thumbnail icon for page 2 
      TH44 [4150]       Thumbnail icon for page 3 
      TH44 [4552]       Thumbnail icon for page 4 
    FORM:DJVU [777858] {p0002.djvu} 
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… 

8.3.2 Directory Chunk:  DIRM  
As described in Multipage Documents, a multipage document will contain “component 
files” such as individual pages (FORM:DJVU) or shared annotations (FORM:DJVI). 

The first contained chunk in a FORM:DJVM composite chunk is the DIRM chunk 
containing the document directory.  It contains information the decoder will need to 
access the component files (see Multipage Documents). 

8.3.2.1 Unencoded data  
The first part of the “DIRM” chunk consists is unencoded: 

Byte Flags/Version b7b6…b0 

b7 (MSB) is the bundled flag. 1 for bundled, 0 for indirect 

b6…b0 is the version.  Currently 1. 

INT16 nFiles Number of component files 

INT32 Offset0, 
Offset1, 
Offset2.. 

When the document is a bundled document (i.e. the flag 
bundled is set), the header above is followed by the offsets 
of each of the component files within the “FORM:DJVM”.  
These offsets allow for random component file access.  
These may be omitted for indirect documents. 

When the document is indirect, these offsets are omitted. 

8.3.2.2 BZZ encoded data 
The rest of the chunk is entirely compressed with the BZZ general purpose compressor.  
We describe now the data fed into (or retrieved from) the BZZ codec (see 
BSByteStream.cpp and appendix 4) 

INT24 Size0, 
size1, 
size2, … 

Size of each component file.  May be 0 for indirect documents. 

BYTE Flag0, 
flag1, 
flag2 

Flag byte for each component file 

  0b<hasname><hastitle>000000 for a file included by other files. 

  0b<hasname><hastitle>000001 for a file representing a page. 

  0b<hasname><hastitle>000010 for a file containing thumbnails. 

Flag hasname is set when the name of the file is different from 
the file ID.  Flag hastitle is set when the title of the file is different 
from the file ID.  These flags are used to avoid encoding the same 
string three times.   

Note:  In practice, the hasname and hastitle bits are poorly tested 
and not used. 
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ZSTR ID0, 
Name0, 
Title0, 
ID1, 
Name1, 
Title1, … 

There are one to three zero-terminated strings per component file.  
The first string contains the ID of the component file.  If hasname 
is set then there is a second string which contains the name of the 
component file (in the case of an indirect file, this is the disk 
filename).  If hastitle is set, then there is a third string which 
contains the name of the component (for display … for example 
alternate page numberings in the Forward, or Preface). 

Note:  ID0 in practice, ID0 is the only string used and in the case 
of indirect files, is the same as the disk filename of the component 
file. 

Examples  

3 Page bundled file with a shared dictionary 
RAW: 

81 3 54 e02 1cf52 

(BZZ Decoded:) 

 dad 1c150 1ec5 0 1 1 

 64 69 63 74 30 30 30 32 dict0002.iff 

 2e 69 66 66 0 

 70 30 30 30 31 2e 64 6a 76 75 0 p0001.djvu 

 70 30 30 30 32 2e 64 6a 76 75 0 p0002.djvu 

 

Flags/Version:  bundled, version 1 

nFiles:  3 

Offsets: 0x54, 0xE02, 0x1CF52 

Sizes:  0xDAD, 0x1C150, 0x1EC5 

Flags:  0, 1, 1 

ZStr:  3 null terminated filenames as shown. 

3 Page indirect file with a shared dictionary 
RAW: 

1 3 

(BZZ Decoded:) 

 dad 1c150 1ec5 0 1 1 

 64 69 63 74 30 30 30 32 dict0002.iff 

 2e 69 66 66 0 

 70 30 30 30 31 2e 64 6a 76 75 0 p0001.djvu 

 70 30 30 30 32 2e 64 6a 76 75 0 p0002.djvu 

 

Flags/Version:  indirect, version 1 

nFiles:  3 

Offsets: omitted for indirect files 

Sizes:  0xDAD, 0x1C150, 0x1EC5 

Flags:  0, 1, 1 

ZStr:  3 null terminated filenames as shown. 

8.3.3 Document Outline Chunk:  NAVM  
The NAVM chunk contains bookmarks which describe an outline of the document.  The 
intent is to allow content authors to create an electronic Table of Contents which gives 
users rapid access to various parts of the document. 

This chunk is optional; but if present, must immediately follow the DIRM chunk. 

The entire chunk is BZZ encoded and starts with a single field specifying the total 
number bookmark records 

UINT16 countBookmarks The total number of bookmarks in the document 

And then the individual bookmark records, nested as necessary. 

BYTE nChildren The number of immediate child bookmark records 



Release Copy 

Page 14 of 71 

INT24 nDesc size of description text 

UTF8 sDesc the description text. 

INT24 nURL Size of the URL text 

UTF8 sURL the URL text.  This may (and typically does) use the syntax 
described for the URLs in the Annotation chunk (and similarly, 
is not URL-encoded) 

Example (as passed to BZZ codec).   

Consider a small document outline as follows: 

Table of Contents 

  Introduction 

  Datasheet 

   For More Info (Online) 

There is no hyperlink associated with the single root entry “Table of Contents”.  At a 
binary level, the chunk looks like this: 

 
0x0012F06C  00 04 02 00  .... 

0x0012F070  00 11 54 61  ..Ta 
countBookmarks = 4;  

nChildren = 2; nDesc=17 
0x0012F074  62 6c 65 20  ble  

0x0012F078  6f 66 20 43  of C 

0x0012F07C  6f 6e 74 65  onte 

0x0012F080  6e 74 73 00  nts. 

sDesc:  “Table of Contents” 

0x0012F084  00 00 00 00  .... 

0x0012F088  00 0c 49 6e  ..In 

 

nURL=0; sURL omitted; 

nChildren=0; nDesc=12 
0x0012F08C  74 72 6f 64  trod 

0x0012F090  75 63 74 69  ucti 

0x0012F094  6f 6e 00 00  on.. 

 

sDesc:  “Introduction” 

0x0012F098  0b 23 70 30  .#p0 

0x0012F09C  30 30 31 2e  001. 

0x0012F0A0  64 6a 76 75  djvu 

nURL=11; sURL = “#p0001.djvu”; 
 

0x0012F0A4  01 00 00 09  .... nChildren=1; nDesc=9 
0x0012F0A8  44 61 74 61  Data 

0x0012F0AC  73 68 65 65  shee 

0x0012F0B0  74 00 00 0b  t... 

sDesc=“Datasheet” 

nURL=11 
0x0012F0B4  23 70 30 30  #p00 

0x0012F0B8  30 32 2e 64  02.d 

0x0012F0BC  6a 76 75 00  jvu. 

sURL=“p0002.djvu” 

nChildren=0 
0x0012F0C0  00 00 16 46  ...F nDesc=22 
0x0012F0C4  6f 72 20 4d  or M sDesc=“For More Info (Online)” 
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0x0012F0C8  6f 72 65 20  ore  

0x0012F0CC  49 6e 66 6f  Info 

0x0012F0D0  20 28 4f 6e   (On 

0x0012F0D4  6c 69 6e 65  line 

0x0012F0D8  29 00 00 19  )... 

 

nURL=25 

0x0012F0DC  68 74 74 70  http 

0x0012F0E0  3a 2f 2f 77  ://w 

0x0012F0E4  77 77 2e 6c  ww.l 

0x0012F0E8  69 7a 61 72  izar 

0x0012F0EC  64 74 65 63  dtec 

0x0012F0F0  68 2e 63 6f  h.co 

0x0012F0F4  6d cc cc cc  mÌÌÌ 

sDesc=“http://www.lizardtech.com” 

8.3.4 Annotation Chunk:  ANTa, ANTz  
Annotations are contained in “ANTa” or “ANTz” chunks.  The “ANTa” chunks contain 
the annotation in plain text. The “ANTz” chunks contain the same information 
compressed with the BZZ encoder (see BSByteStream.h). 

The use of the ANTa chunk is discouraged. 

Pages can share annotations using an INCL chunk as explained in section Including 
Shared Information.  The complete annotation text is obtained by concatenating all 
annotation chunks present in the page.  A restriction of the current reference library 
implementation limits the number of shared annotation files to one. 

The syntax of the annotation text uses a simple parenthesized notation. All text is 
standard UTF8.  

8.3.4.1 Initial Document View 

8.3.4.1.1 Background Color. 
(background color)  

Specify the color of the viewer area surrounding the DjVu image. Colors are represented 
with the X11 hexadecimal syntax #RRGGBB. For instance, #000000 is black and 
#FFFFFF is white. 

8.3.4.1.2 Initial Zoom 
(zoom zoomvalue)  

Specify the initial zoom factor of the image. Argument zoomvalue can be one of stretch, 
one2one, width, page, or composed of the letter d followed by a number in range 1 to 
999 representing a zoom factor (such as in d300 or d150 for instance.)  

8.3.4.1.3 Initial Display level 
(mode modevalue)  

Specify the initial display level of the image. Argument modevalue is one of color, bw, 
fore, or black.  
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8.3.4.1.4 Alignment 
(align horzalign vertalign)  

Specify how the image should be aligned on the viewer surface. By default the image is 
located in the center. Argument horzalign can be one of left, center, or right. Argument 
vertalign can be one of top, center, or bottom. 

Example (Typical Shared Annotation) 
(background #FFFFFF ) (zoom page ) (mode bw ) (align center default ) 

8.3.4.2 Maparea (overprinted annotations) 
(maparea url comment area ...)  

A “Maparea annotation” defines an overprinted annotation (one that is drawn on top of 
the rendered image).  These annotations are used to draw Lines, Text boxes, Highlight 
areas with optional hyperlinking capability.  The area parameter distinguishes among 
several different forms of mapareas.  For convenience, we will sometimes refer to “rect 
mapareas” when we mean “mapareas whose area attribute is rect” and similarly “line 
mapareas”, etc. 

A note about escape sequences.  The only currently-accepted escape sequence is for a 
single quote:  \”.  All other string characters are written in UTF8 (ascii-compatible).  
Specifically, where needed, spaces, ampersands (“&”), backslashes (“\”) and parentheses 
(“(“, “)”) are written directly.    Erroneous and unrecognized constructs are silently 
ignored. 

 

8.3.4.2.1 url 
Argument url takes either of these forms  

href   
(url href target)  

href can be an arbitrary URL or can be composed of the hash character (#) followed by 
either a component file identifier or a page number. Page numbers may be prefixed with 
an optional sign to represent a page displacement. For instance the strings #-1 and #+1 
can be used to access the previous page and the next page.  href is not URL-encoded. 

target is a string representing the target frame for the hyper-link, as defined by the HTML 
anchor tag <A> 

8.3.4.2.2 comment 
Argument comment is a string that might be displayed by the viewer when the user 
moves the mouse over the maparea.  

8.3.4.2.3 area 
Argument area defines the shape and the location of the maparea. The following forms 
are recognized: 
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(rect xmin ymin width height)  // defines a rectangle 
(oval xmin ymin width height)  // defines an oval 
(text xmin ymin width height)  // defines a text box 
(poly x0 y0 x1 y1 ... )    // defines a polygon 
(line x0 y0 x1 y1)   // defines a line with optional arrow head 

All parameters are numbers representing coordinates. Coordinates are measured in pixels 
and have their origin at the bottom left corner of the rotated (this for historical reasons; 
see Document Info Chunk) page. 

8.3.4.2.3.1 Miscellaneous parameters 

The remaining expressions in the maparea list concern the visual effects associated with 
the maprea annotation. 

Summary (X denotes “supported”) 

Area attribute rect oval poly line text 

Miscellaneous parameter  

Border type  

(none)/(xor)/(border color) X X X X X 

(shadow_* thickness) X     

(border_avis) X X X   

(hilite color) / (opacity op) X     

(arrow)/(width w) /(lineclr c)    X  

(backclr c) /(textclr c) /(pushpin)     X 

8.3.4.2.3.1.1 Border type 

A first set of options define the border-type of the associated maparea:  
(none) // no border 
(xor) 
(border color)  // solid border width 1 
(shadow_in thickness) 
(shadow_out thickness) 
(shadow_in thickness) 
(shadow_out thickness)  

where parameter color has syntax #RRGGBB as described above, and parameter 
thickness is an integer in range 1 to 32 and specifies line thickness in pixels.  The last 
four border modes are only supported for rect mapareas. 

8.3.4.2.3.1.2 Border always visible 

The border becomes visible when the user moves the mouse over the maparea. The 
border may be made always visible by using the “border always visible” option as 
follows:  
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(border_avis) 

8.3.4.2.3.1.3 Highlight color and opacity 

The following options may be used with rect mapareas. The complete area will be 
highlighted using the specified color at the specified opacity (0-100, default of 50).  

(hilite color) 
(opacity op)  

8.3.4.2.3.1.4 Line and Text parameters 

The following options may be used with line mapareas to specify an optional ending 
arrow, the line width and color: 

(arrow)    --- default (not present) means “no ending arrow” 
(width w)   --- default (not present) means w == 1 
(lineclr color)   --- default (not present) means color==black 

The following options may be used with text mapareas: 
(backclr bkcolor)  --- default (not present) means transparent 
(textclr txtcolor) --- default (not present) means black  
(pushpin)  --- not default (not present) means “not push pin” 

If any border type non-“none” is specified, the border is drawn “solid”, (as if “(color c)” 
were specified).  

Where  

bkcolor specifies the background text color 

txtcolor specifies the text color 

pushpin specifies that the text box is collapsible.  This allows the text box to expand into 
view when needed but not obscure the image otherwise.. 

Examples (typical page-level annotation): 
(maparea "http://www.lizardtech.com/" "Here is a rectangular hyperlink" 
    (rect 543 2859 408 183 ) (xor ) )  
(maparea "http://www.lizardtech.com/" "Here is an oval hyperlink"  
    (oval 1068 2853 429 195 ) (xor )  
 (maparea "" "Here is a text box"(text 1635 2775 423 216 )  
    (pushpin ) (backclr #FFFF80 ) (border #000000 ) ) 
(maparea "" "Arrow" (line 591 3207 1512 3138 ) (arrow ) (none ) ) 

8.3.4.3 Printed headers and footers 
User-specified strings may be added to printed output. 

(<phead | pfoot> position_string1, position_string2, …) 

Where position_string is of the form:  <left|center|right>::<string> 

Example 

(phead "left::Sept 20, 2005" "right::Today’s Menu " ) (pfoot "center::Chez Dominique" ) 
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8.3.5 Text Chunk:  TXTa, TXTz  
Text is contained in “TXTa” or “TXTz” chunks.  The “TXTa” chunks contain the text 
unencoded. The “ANTz” chunks contain the same information compressed with the BZZ 
encoder (see BSByteStream.h). 

The use of the TXTa chunk is discouraged. 

The chunk begins with the UTF8-encoded text of the page: 

INT24 lenText size of the text string in bytes 

UTF8 strText UTF8 encoded string 

BYTE Version Version is currently 1 

 [Implemenation Note].  The text may optionally contain separators between text blocks 
corresponding to various zones.  These may be simple CR/LF  and <space>, terminating 
NULL, or the more arcane cases such as VT (vertical tab, ascii 0xB) GS (group separator, 
0x1D), RS (record separator 0x1E) and US (unit separator  0x1F),.  Such separators can 
have a significant impact on searching and exporting implementations.  Decoding 
applications should be prepared to address this. 

Following this is a list of 0 or more zones which define the bounding rectangles of the 
text above.  Zones may contain heirachically smaller zones (e.g. columns contain regions, 
words contain characters) and zones at the same hierarchical level should not overlap.  
Zones are listed in reading order with parents preceeding children. 

Each Zone is record is 17 bytes long and comprised of the following 8 fields. 

BYTE Ztype Zone Type (see below) 

INT16 X Unsigned two-byte integer.  X component of the zone’s offset 
from a preceeding zone.  See below  

INT16 Y Unsigned two-byte integer.  Y component of the zone’s offset 
from a preceeding zone.  See below  

INT16 Width Unsigned two-byte integer.  Width of the zone, offset by 32768. 

INT16 Height Unsigned two-byte integer.  Height of the zone, offset by 
32768. 

INT16 offText Not used.  Must be 0. 

INT24 lenText Text length.  The number of characters n this zone. 

INT24 nChildren Number of child zones 

Zone Type can be any of Page (1), Column (2), Region (3), Paragraph (4), Line (5), 
Word (6), Character (7). 

X, y width and height are sixteen bit unsigned integers which encode a potentially 
negative value by adding an offset of 32768 (0x8000).  To recover the actual value 
subtract 0x8000.  Coordinates are unrotated (see Document Info Chunk). 
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X and Y identify the zone’s displacement from either the zone’s preceeding sibling (if 
any) or the zone’s parent.  Depending on the context, the coordinate system and the 
portion of the zone being located vary.  There are three cases to consider: 

• The zone is the first contained zone of a parent (e.g. the first Word in a Line).  In 
such a case, we measure from the parent’s upper left corner to the zone’s upper 
left corner.  X to right and Y down. 

 
• The zone is the second or subsequent Page, Paragraph or a Line contained in a 

parent (e.g. second Line in a Paragraph).  In such a case, we again measure from 
the previous Lower Left corner to the zone’s upper left.  X to the right and Y 
down. 

 
• The zone is the second or subsequent Column, Word or Character contained in a 

parent (e.g. second Word in a Line).  In such a case, we measure from the 
previous Lower Right corner to the zone’s lower left.  X to the right and Y up. 

 
See also file DjVuText.cpp and DjVuAnno.cpp in DjVuLibre.  

Example (as passed to BZZ codec).   

Consider the the following simple DjVu Image with 4 paragraphs of text as shown below. 

Child 

Parent 
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At a binary level, the chunk looks like this: 

 
0x0012F078  00 00 a1 74 65 78 74 65  ..¡texte 
0x0012F080  78 61 6d 70 6c 65 2e 74  xample.t 

0x0012F088  78 74 20 0a 1f 1d 54 68  xt ...Th 

0x0012F090  69 73 20 74 65 78 74 20  is text  

0x0012F098  69 73 20 0a 69 6e 20 74  is .in t 

0x0012F0A0  68 65 20 63 6f 6c 75 6d  he colum 

0x0012F0A8  6e 20 0a 6f 6e 20 74 68  n .on th 

0x0012F0B0  65 20 6c 65 66 74 2e 20  e left.  

0x0012F0B8  0a 1f 1d 54 68 69 73 20  ...This  

0x0012F0C0  74 65 78 74 20 69 73 20  text is  

0x0012F0C8  0a 6f 6e 20 74 68 65 20  .on the  

0x0012F0D0  72 69 67 68 74 2e 20 0a  right. . 

0x0012F0D8  4d 6f 73 74 20 4f 43 52  Most OCR 

0x0012F0E0  20 45 6e 67 69 6e 65 73   Engines 

0x0012F0E8  20 0a 77 69 6c 6c 20 63   .will c 

0x0012F0F0  6f 72 72 65 63 74 6c 79  orrectly 

0x0012F0F8  20 0a 67 72 6f 75 70 20   .group  

0x0012F100  69 74 20 74 6f 67 65 74  it toget 

0x0012F108  68 65 72 2e 20 0a 1f 1d  her. ... 

0x0012F110  50 61 67 65 20 31 20 0a  Page 1 . 

0x0012F118  1f 1d 0b 00 01 01 81 21  ......�! 

lenText = 0xA1 (161 bytes) 

strText (as shown).   

Note the presence of LF (0x0A), US 
(0x1F) and RS (0x1D) embedded 
within the text.  These optional, non-
printable characters are often used to 
partition text layout regions (e.g. 
columns, side-blocks, etc) 

Note also that  the string starts at 
0x12F07B (following lenText), 
extends 161 bytes and ends at 
12F11B (terminating NULL) 

      T    X     Y    W     H      0    Len    nChild 

               289   118   1441  3063        161¶ 
0x0012E51D  01 81 21 80 76 85 a1 8b f7 80 00 00 00 a1 00 00 01¶

 
 
Page Zone   

Image 

Page and 
Column

Regions and 
Paragraphs in 
Green.  Inside 
Paragraphs are 
Lines, Word and 
Characters (not 
shown) 

 



Release Copy 

Page 22 of 71 

               0     0     1441  3063        160 

0x0012E52E  02 80 00 80 00 85 a1 8b f7 80 00 00 00 a0 00 00 04¶
               801   0     366   40          19¶ 
0x0012E53F  03 83 21 80 00 81 6e 80 28 80 00 00 00 13 00 00 01 

               0     0     366   40          18¶ 
0x0012E550  04 80 00 80 00 81 6e 80 28 80 00 00 00 12 00 00 01¶
               0     0     366   40          17¶ 
0x0012E561  05 80 00 80 00 81 6e 80 28 80 00 00 00 11 00 00 01¶
               0     0     366   40          16¶ 
0x0012E572  06 80 00 80 00 81 6e 80 28 80 00 00 00 10 00 00 00 

               -1167 -197  322   114         45 

0x0012E583  03 7b 71 7f 3b 81 42 80 72 80 00 00 00 2d 00 00 01 

               0     0     322   114         44¶ 
0x0012E594  04 80 00 80 00 81 42 80 72 80 00 00 00 2c 00 00 03 

               0     0     296   32          14¶ 
0x0012E5A5  05 80 00 80 00 81 28 80 20 80 00 00 00 0e 00 00 03¶
               0     0     96    32          5¶ 
0x0012E5B6  06 80 00 80 00 80 60 80 20 80 00 00 00 05 00 00 00¶
               31    0     95    26          5¶ 
0x0012E5C7  06 80 1f 80 00 80 5f 80 1a 80 00 00 00 05 00 00 00¶
               31    0     43    32          3¶ 
0x0012E5D8  06 80 1f 80 00 80 2b 80 20 80 00 00 00 03 00 00 00¶
               3     9     319   32          15¶ 
0x0012E5E9  05 80 03 80 09 81 3f 80 20 80 00 00 00 0f 00 00 03¶
0x0012E5FA  06 80 00 80 00 80 2c 80 20 80 00 00 00 03 00 00 00¶
0x0012E60B  06 80 1e 80 00 80 46 80 20 80 00 00 00 04 00 00 00¶
0x0012E61C  06 80 1e 80 00 80 91 80 20 80 00 00 00 07 00 00 00¶
0x0012E62D  05 7f fe 80 09 81 21 80 20 80 00 00 00 0e 00 00 03¶
0x0012E63E  06 80 00 80 0a 80 2e 80 16 80 00 00 00 03 00 00 00¶
0x0012E64F  06 80 1e 80 00 80 46 80 20 80 00 00 00 04 00 00 00¶
0x0012E660  06 80 1f 80 00 80 70 80 20 80 00 00 00 06 00 00 00¶
0x0012E671  03 82 a5 7f a6 81 ba 80 cc 80 00 00 00 55 00 00 01¶
0x0012E682  04 80 00 80 00 81 ba 80 cc 80 00 00 00 54 00 00 05¶
0x0012E693  05 80 01 80 00 81 28 80 20 80 00 00 00 0e 00 00 03¶
0x0012E6A4  06 80 00 80 00 80 60 80 20 80 00 00 00 05 00 00 00¶
0x0012E6B5  06 80 1f 80 00 80 5f 80 1a 80 00 00 00 05 00 00 00¶
0x0012E6C6  06 80 1f 80 00 80 2b 80 20 80 00 00 00 03 00 00 00¶
0x0012E6D7  05 80 01 80 09 81 3a 80 28 80 00 00 00 0f 00 00 03¶
0x0012E6E8  06 80 00 80 0a 80 2e 80 16 80 00 00 00 03 00 00 00¶
0x0012E6F9  06 80 1e 80 00 80 46 80 20 80 00 00 00 04 00 00 00¶
0x0012E70A  06 80 21 7f f8 80 87 80 28 80 00 00 00 07 00 00 00¶
0x0012E71B  05 80 00 80 01 81 8b 80 28 80 00 00 00 12 00 00 03¶
0x0012E72C  06 80 00 80 06 80 60 80 1a 80 00 00 00 05 00 00 00¶
0x0012E73D  06 80 1c 80 00 80 4a 80 1a 80 00 00 00 04 00 00 00¶
0x0012E74E  06 80 1d 7f f8 80 a8 80 28 80 00 00 00 08 00 00 00¶
0x0012E75F  05 7f fe 80 01 81 5e 80 28 80 00 00 00 10 00 00 02¶
0x0012E770  06 80 00 80 00 80 5c 80 20 80 00 00 00 05 00 00 00¶
0x0012E781  06 80 24 7f f8 80 de 80 28 80 00 00 00 0a 00 00 00¶
0x0012E792  05 80 03 80 01 81 b7 80 28 80 00 00 00 14 00 00 03¶

 
 
Column 
 
Region 1 of 4 
 
Paragraph 1 
 
Line 1 
 
Word 1 
 
Region 2 of 4 
 
Paragraph 1 
 
Line 1 
 
(A note to the very 
observant:  the 
addresses here are 
different than those 
in the above.  This is 
a documentation 
artifact and not 
reflective of missing 
bytes!  All bytes in 
this example are 
contiguous. 
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0x0012E7A3  06 80 00 80 0a 80 79 80 1e 80 00 00 00 06 00 00 00¶
0x0012E7B4  06 80 1e 80 08 80 2c 80 20 80 00 00 00 03 00 00 00¶
0x0012E7C5  06 80 1e 7f f8 80 d6 80 28 80 00 00 00 0a 00 00 00¶
0x0012E7D6  03 7d f1 75 50 80 90 80 26 80 00 00 00 0a 00 00 01¶
0x0012E7E7  04 80 00 80 00 80 90 80 26 80 00 00 00 09 00 00 01¶
0x0012E7F8  05 80 00 80 00 80 90 80 26 80 00 00 00 08 00 00 02¶
0x0012E809  06 80 00 80 04 80 5d 80 22 80 00 00 00 05 00 00 00¶
0x0012E81A  06 80 1f 80 08 80 14 80 1e 80 00 00 00 02 00 00 00¶ 

8.3.6 Bitonal Mask Chunk:  Sjbz 
Bitonal data is used to encoded using the jb2 shape-matching compression technique.  
Details are provided in Appendix 2 

8.3.7 Foreground Wavelet Chunk:  FG44 
A compound djvu image may contain a single FG44 chunk which contains the 
foreground color.  The content of this chunk is described in detail in Appendix 1 

8.3.8 Background Wavelet Chunk:  BG44 
A compound djvu image may contain a multiple BG44 chunks which contain the 
background color.  The content of these chunks is described in detail in in Appendix 1. 

8.3.9 Thumbnail Wavelet Chunk:  TH44 
Multipage document file optionally can contain thumbnails for some or all pages.  These 
thumbnails are stored into special component files containing thumbnails for a number of 
consecutive pages. 

The thumbnail component file is composed of a single “FORM:THUM” containing one 
or more TH44 chunks.  Each TH44 chunk contains one IW44 encoded thumbnail image 
for one page.  See Appendix 1. 

8.3.10 Foreground Color JB2 Chunk:  FGbz 
A compound djvu image may contain a single FGbz chunk containing the foreground 
colors. 

Byte Version High order bit indicates that there is shape table correspondence 
data (below) 

Lower seven bits are the version, currently 0. 

Palette Data 

INT16 nPaletteSize Number of palette entries:  0 > nPaletteSize < 65535 

BYTE3 bgrColor Palette entries.  3 bytes each.  BGR order. 

JB2 Correspondence Data (see version) 

INT24 nDataSize Number of JB2 blits which will be colored 

INT16 Index0, BZZ encoded indices.  Index0 is the color of JB2 blit 0, etc. 
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index1, … 

See also file DjVuPalette.cpp in DjVuLibre.  

8.3.11 Document Info Chunk:  INFO 
As discussed in Single Page Documents, every DjVu image requires an INFO chunk and 
this must be the first (non-container) chunk. The INFO chunk data consists of seven 
fields in 10 bytes:  

INT16 Width A two-byte unsigned integer, most significant byte first, specifying the 
width of the image in pixels. 

INT16 Height A two-byte unsigned integer, most significant byte first, specifying the 
height of the image in pixels. 

BYTE Minor 
Version 

A one-byte unsigned integer, specifying the minor version number of 
the encoder being used.  Currently 26 

BYTE Major 
Version 

A one-byte unsigned integer, specifying the major version number of 
the encoder being used.  Currently 0. 

INT16 Dpi A two-byte unsigned integer, least significant byte first, specifying the 
spatial resolution of the image in dots per inch (dots per 2.54 cm). 

BYTE Gamma A one-byte unsigned integer, equal to 10 times the gamma of the device 
on which the image is expected to be rendered 

BYTE Flags Mask to be interpretted as follows: 
The first 5 bits are reserved for future implementations 
The last 3 bits specify the image’s rotation.  The following 4 patterns 
are recognized: 
 1  – 0° (rightside up) 
 6 – 90° Counter Clockwise 
 2  – 180° (unside down) 
 5 – 90° Clockwise 
Note that the rotation affects the any coordinates in the Annotation 
chunk. 

Any additional data in the INFO chunk is to be ignored. 

Example: 

0000010: 494e 464f IFF Chunk ID=“INFO”;  

0000014: 0000 000a IFF Size=10 bytes 

0000018: 089a 03c7  width=2202; height=967 

000001c: 1a00 2c01   version=26; resolution=300dpi (LSB) 

0000020: 1601 536a gamma*10=22; flags=0x01;     

See also file DjVuInfo.cpp in DjVuLibre. 

A note about the version field. 
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The intent of the version field is to allow decoders to recognized files based on later 
versions of the file format (and which they may, therefore, not be completely prepared to 
interpret).  An approximate history of changes follows: 

Minor Version Date Notes 

20 1999 April DjVu version 3.  “old indirect format” (initial 
Multipage support), DjVuAnno chunk 

21 1999 September “new indirect format” DjVuText chunk 

22 2001 April Orientation 

Color JB2 

23 2002 July CID chunk (obsolete) 

24 2003 February LTAnno chunk (obsolete) 

25 2003 May NAVM chunk 

26 2005 April Text / Line annotations 

8.3.12 INCL 
This is the counterpart to the FORM:DjVi chunk which provides document-level 
(“shared”) information.  The INCL chunk simply contains the (unencoded) UTF8 
encoded ID of the included component file.  To obtain the data for this chunk, the 
decoder should look for this ID at in the governing DIRM chunk.  The corresponding 
chunk must be of type FORM:DJVI and contain the shared chunk. 

8.3.13 Background JPEG Chunk:  BGjp 
The background in  DjVu file is typically stored in one or more BG44 chunks.  As an 
alternative, the background can be stored using the traditional JPEG encoding.  Simply 
write the JPEG bytestream to the contents of the chunk.  See Reference 3 for details of 
this stream. 

8.3.14 Foreground JPEG Chunk:  BFjp 
The foreground in  DjVu file is typically stored in one or more BG44 chunks.  As an 
alternative, the foreground can be stored using the traditional JPEG encoding.  Simply 
write the JPEG bytestream to the contents of the chunk.  See Reference 3 for details of 
this stream. 

8.3.15 Foreground MMR Chunk:  Smmr 
The mask in a DjVu file is typically stored in the Sjbz chunk.  As an alternative, the mask 
may be encoded using the traditional MMR encoding. 

The Smmr chunk type can be used as an alternative to the Sjbz chunk to encode the mask 
data. The Smmr chunk data consists of:  

BYTE*3 Magic ‘M’ ‘M’ ‘R’ 
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BYTE Flags 0xb000000<s><i>. 

<i> is similar to TIFF’s ‘min-is-black’ tag.  It is set for a reverse video 
image. 

<s> is set to indictate that the MMR data is in stripes 

INT16 Width Width of image. (MSB first) 

INT16 Height Height of image. (MSB first) 
Following this header is either the “regular” MMR encoded data or (if flags.s is set) the 
striped data format consisting 

INT16 Rps Rows per stripe 

INT32 Nbytes0 Number of bytes in the first stripe 

BYTE* Mmrdata0 The MMR encoded data for the first stripe 

INT32 Nbytes1 Number of bytes in the second stripe 

BYTE* Mmrdata1 The MMR encoded data for the second stripe 

…   

See also (a) Reference 5 “G4” and (b) file MMRDecoder.cpp in DjVuLibre. 
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9 DjVu in the Raw (binary and IFF level dumps) 

9.1 Single Page Example (FORM:DjVu) 
0000000: 4154 2654 464f 524d 0000 68a6 444a 5655  AT&TFORM..h¦DJVU 
0000010: 494e 464f 0000 000a 089a 03c7 1a00 2c01  INFO.......Ç..,. 
0000020: 1601 536a 627a 0000 334d 800f 64de 94a4  ..Sjbz..3M..dÞ.. 
0000030: 2734 d181 668a 6864 6061 d987 ea98 4af3  '4Ñ.f.hd`aÙ.ê.Jó 
0000040: 41d7 a905 9054 ca3d 0ed0 5a9f a004 2fa1  A....TÊ=.ÐZ.../. 

0000050: f3dd d4ef 202b fc9f 49a6 e23d e4b6 c1ed  óÝÔï +ü.I¦â=ä.Áí 
0000060: 6fae ac0e f9e0 8dd4 fe94 18c8 0fa1 2ae2  o...ùà.Ôþ..È..*â 
0000070: fb94 82fe 3b2b 098a d772 8638 349f 0118  û..þ;+...r.84... 
0000080: e59c 3ded f685 c8a6 9df5 944f 80cd 9d0d  å.=íö.È¦.õ.O.Í.. 
0000090: c263 206e 003f 953e 4b63 c56b 6089 841d  Âc n.?.>KcÅk`... 

  FORM:DJVU [26790] ; note IFF length field (0x68A6) 

    INFO [10]         DjVu 2202x967, v26, 300 dpi, gamma=2.2 

    Sjbz [13133]      JB2 bilevel data 

 (BZZ Encoded) 

0003320: dde6 b770 ac01 1495 cec1 2b48 44c4 2f99  Ýæ.p....ÎÁ+HDÄ/. 

0003330: ce7f ffff 6046 5fcf 555a 471f 71bd e270  Î.ÿÿ`F_ÏUZG.q½âp 
0003340: b37a 7899 68ba e344 0412 128b f65f ffff  .zx.hºãD....ö_ÿÿ 
0003350: 9db5 a6a1 70cf 58cc 0378 183b d0cf c8e0  .µ¦.pÏXÌ.x.;ÐÏÈà 
0003360: 17ab 221b 9cd6 f1e1 d1fa b820 e0ab 8099  .."..ÖñáÑú¸ à... 
0003370: b4c3 f320 7361 8700 4647 3434 0000 00b9  ´Ãó sa..FG44.... 
0003380: 004c 0102 00b8 0051 80ff f0cd b97f 5015  .L...¸.Q.ÿðÍ..P. 
0003390: e227 b61f 6dad 3543 71d3 3fff ffff ff6d  â'..m.5CqÓ?ÿÿÿÿm 
00033a0: 0936 38d2 0e2a f4af 6a25 21c2 ffff f661  .68Ò.*ô.j%!Âÿÿöa 
00033b0: 375b 82ac 610c c600 4aac 9843 a4f9 cb93  7[..a.Æ.J..C.ùË. 
00033c0: 0edb 777e 53b8 0916 7887 6434 2a7d db32  .Ûw~S¸..x.d4*}Û2 

00033d0: 132b 204f b60e ff27 9dc2 ba3c c1cf 9fe8  .+ O..ÿ'.Âº<ÁÏ.è 
00033e0: 4d2f 598c 2aef 2d75 51d2 620f 894c 92a7  M/Y.*ï-uQÒb..L.. 

00033f0: 9cdd 1f0a 64ab dc50 890e f6a2 06aa 1ae9  .Ý..d.ÜP..ö..ª.é 
0003400: a0e8 18db fb89 aad5 9e1a 5046 a546 a0fc  .è.Ûû.ªÕ..PF.F.ü 
0003410: 955a dd1c fbcc 9bc5 bcb0 fa55 1052 a20f  .ZÝ.ûÌ.Å¼.úU.R.. 

 

 

 

 

 

    FG44 [185]        IW44 data #1, 76 slices, v1.2 (color), 184x81 
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0003400: a0e8 18db fb89 aad5 9e1a 5046 a546 a0fc  .è.Ûû.ªÕ..PF.F.ü 
0003410: 955a dd1c fbcc 9bc5 bcb0 fa55 1052 a20f  .ZÝ.ûÌ.Å¼.úU.R.. 
0003420: ec35 707c 750e fed7 be89 fb70 101c 293a  ì5p|u.þ.¾.ûp..): 
0003430: d6e8 6185 c2ed cabc 1700 4247 3434 0000  Öèa.ÂíÊ¼..BG44.. 

0003440: 03a7 004a 0102 02de 0143 8afa 048f 09d4  ...J...Þ.C.ú...Ô 

0003450: 3488 2e32 9043 cf43 d341 caeb 85c6 1553  4..2.CÏCÓAÊë.Æ.S 

0003460: 412d 8382 81a4 454e 7fff ffff ffff aeb8  A-....EN.ÿÿÿÿÿ.¸ 
0003470: afff ffff ffff ffff ffff ffff ffff ffff  .ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ 
0003480: ffff ffff b03b 7ffc 63ca 673e 4bfb 52dc  ÿÿÿÿ.;.ücÊg>KûRÜ 

0003490: d2a6 5ae6 7e9f f6ee 3da4 cb7e 826e 9c00  Ò¦Zæ~.öî=.Ë~.n.. 
00034a0: 0023 92e4 8a7c 1480 777c 7d11 2f48 8bb1  .#.ä.|..w|}./H.. 
00034b0: f43d 652f 3b4f 08a0 f36e dfe9 3f0f 6f0c  ô=e/;O..ónßé?.o. 
00034c0: c928 36ae 4a38 a87c 4920 2ec0 6d9e 4dff  É(6.J8¨|I .Àm.Mÿ 
00034d0: 705a 7a48 b72e 6000 0003 7685 277f ffff  pZzH..`...v.'.ÿÿ 
00034e0: fffc 4f28 1d0b 4b61 4e25 54f3 ecaf fa7c  ÿüO(..KaN%Tóì.ú| 

 

 

 

    BG44 [935]        IW44data #1, 74 slices, v1.2 (color), 734x323 

 

00037d0: 5bba 3cc5 490a 2044 d8fd 5183 06ac 9a43  [º<ÅI. DØýQ....C 
00037e0: 6df1 046c a110 26e7 0400 4247 3434 0000  mñ.l..&ç..BG44.. 
00037f0: 0688 010a 0538 46fc 1abf 10aa e1a1 f94e  .....8Fü...ªá.ùN 
0003800: 1b27 bab5 eead debc 7685 17a8 9b72 1439  .'ºµî.Þ¼v..¨.r.9 
0003810: 5ab8 028a bae0 b76b 93e6 3da8 9d1b c20d  Z¸..ºà.k.æ=¨..Â. 

0003820: 66f1 bfe5 f839 007e d95a 728f 9213 8089  fñ.åø9.~ÙZr..... 

0003830: 56e0 f911 7e57 b47f 188b 0b5f b7ac 41bc  Vàù.~W´...._..A¼ 

0003840: 1d78 d819 d806 4db4 0fb7 3eed e653 fdb1  .xØ.Ø.M´..>íæSý. 
0003850: 163d 0674 6119 f84f 572c 06c9 e66a cafe  .=.ta.øOW,.ÉæjÊþ 

 

    BG44 [1672]       IW44 data #2, 10 slices 

… 

 

9.2 A multipage example (FORM:DjVm) 
FORM:DJVM [126475] 

  DIRM [59]         Document directory (bundled, 3 files 2 pages) 

  FORM:DJVI [3493] {dict0002.iff} 
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  FORM:DJVU [115016] {p0001.djvu} 

  FORM:DJVU [7869] {p0002.djvu} 

   
-bash-3.00$ xxd  -s 0  -l 32 mpage.djvu 

0000000: 4154 2654 464f 524d 0001 ee0b 444a 564d  AT&TFORM....DJVM 

0000010: 4449 524d 0000 003b 8100 0300 0000 5400  DIRM...;......T.  

 

-bash-3.00$ xxd  -s 84  -l 32 mpage.djvu 

0000054: 464f 524d 0000 0da5 444a 5649 446a 627a  FORM....DJVIDjbz 

0000064: 0000 0d99 e6fd f53e ad32 cbe9 0704 2c58  .......>.2....,X 

 

-bash-3.00$ xxd  -s 3586  -l 32 mpage.djvu 

0000e02: 464f 524d 0001 c148 444a 5655 494e 464f  FORM...HDJVUINFO 

0000e12: 0000 000a 09eb 0cdf 1900 2c01 1601 4349  ..........,...CI 

 

-bash-3.00$ xxd  -s 118610 -l 32 mpage.djvu 

001cf52: 464f 524d 0000 1ebd 444a 5655 494e 464f  FORM....DJVUINFO 

001cf62: 0000 000a 09eb 0cdf 1900 2c01 1601 4349  ..........,...CI 

FORM:DJVM [126475] 

DIRM [59] 

 

Not shown:  0x10+8(header)+59(length) 

FORM:DJVI [3493] 

Not shown:  0x64+8(header)+0xda5(length) 

FORM:DJVU [115016] 

 

etc 
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10 Appendix 1:  IW44 coding. 
This section describes the coding of chunks of type BG44, FG44, PM44, BM44, and 
TH44.   Chunks of type BG44, FG44, and TH44 may be color or grayscale chunks. 
Chunks of type PM44  are color chunks. Chunks of type BM44 are grayscale chunks.   
All of these color and grayscale chunk types have the same structure. The chunk consists 
of a chunk header followed by arithmetically coded wavelet coefficient updates. The 
coefficients are organized in a hierarchical fashion.  

10.1 Definitions  
Color component. Compound DJVU Images and Photo DJVU Images contain color or 
grayscale image data. Color IW44 Images contain color image data. Grayscale IW44 
Images contain grayscale image data. Color image data is coded using three color 
components, called Y, Cb, and Cr. These correspond to the usual YCbCr color space, 
adjusted to facilitate transformation to the RGB color space. Grayscale image data is 
coded using one color component, called Y. This corresponds to the grayscale intensity 
of the image.  

Color layer. A color layer is any of:  

• The foreground layer of a Compound DJVU Image, coded in one FG44 chunk  

• The background layer of a Compound DJVU Image, coded in one or more BG44 
chunks 

• The only layer of a Photo DJVU Image, coded in one or more BG44 chunks 

• The only layer of a Color IW44 Image, coded in one or more PM44 chunks 

• The only layer of a Grayscale IW44 Image, coded in one or more BM44 chunks  

Color chunk. A color chunk is a chunk of type BG44, FG44, PM44, or BM44. A color 
chunk contains wavelet coefficient update information for one or three color components.  

Block. A rectangular array of pixels of size 32 x 32 or less. The blocks are numbered 
starting in the lower left corner of the image. All blocks are 32 x 32 except possibly those 
along the right edge or top edge; those blocks may be smaller if the image dimensions are 
not divisible by 32.  

Block count. The number of blocks in the image, denoted by NB. 

Wavelet block. The set of coefficients associated with one block of the image, in one 
color component. There are 1024 wavelet coefficients in a wavelet block, numbered 0 
through 1023. The coefficients in a wavelet block have effects on the reconstruction of 
other blocks in the image, but for coding purposes they are considered to be localized 
within the block in which they are coded. 

Bucket. A particular set of 16 wavelet coefficients within a wavelet block. A wavelet 
block consists of 64 buckets, numbered 0 through 63. Table 2 gives the correspondence 
between coefficients and buckets.  
Band number Coefficient indices Bucket indices 
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0  0-15 0 

1  16-31 1 

2  32-47 2 

3  48-63 3 

4  64-127 4-7 

5  128-191 8-11 

6  192-255 12-15 

7  256-511 16-31 

8  512-767 32-47 

9 768-1023 48-63 
Table 2:  Wavelete coefficient bands 

Band. A subset of wavelet coefficients for a given color component. There are 10 bands. 
The correspondence among band numbers, coefficient coefficients, and bucket 
coefficients is given by Table 2. 

Cycle. Data for one color component consisting of coefficient updates for all coefficients, 
that is, for all 10 bands, starting with band 0. Within one band, only some coefficients are 
updated, but within a cycle, all coefficients are updated. The last cycle of a color 
component may have fewer than 10 bands.  

Color band number. The current band number for a color component. Each color 
component's color band number starts at 0, and increases by 1 at the end of selected slices 
until it reaches 9; then it is reset to 0.  

Color band. A collection of update information for a subset of the coefficients of one 
color component of the image, consisting of updates of all the coefficients in the image 
whose indices within their respective blocks are those corresponding to the current color 
band's color band number.  

Slice. A slice is the highest level subdivision of a color chunk. A slice contains data for 
one color band for each of the color components in a color layer, that is, for three color 
components for a color image, or for one color component for a grayscale image.  

Block band. A collection of update information for a subset of the coefficients of one 
color component of a wavelet block, consisting of updates of the coefficients in the block 
whose indices are those corresponding to a given band.  

Chrominance delay counter. An integer counter that indicates how many slices in a 
color layer contain a color band only for the Y color component, and not for the Cb and 
Cr color components. The chrominance delay counter is initially set to the value specified 
in the INFO chunk for the color layer, and decremented by i after each slice in the color 
layer until it reaches 0. See the section on Band counting below.  

Step size table. A table that indicates the precision to which each coefficient in a color 
component is currently stored. There are three such tables for a given color layer, one for 
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each color component. Each such table has 16 entries. Each entry specifies the current 
step size for 1, 4, 16, 64, or 256 different coefficient indices, according to Table 3.  

10.2 Color chunks within an DjVu file  
There may be more than one BG44 or PM44 or BM44 chunks in a DjVu file. If there is 
more than one such color chunk, the coefficient updating is continuous across the chunks, 
and the data is taken from the chunks in the order in which they appear in the file. 
Nothing is reinitialized at the beginning of chunks after the first color chunk of these 
types, except for the low level arithmetic coder. The probability estimates for the 
arithmetic coder are not reinitialized. 

In a Compound DJVU Image file, in which both an FG44 chunk and one or more BG44 
chunks appear in the same file, the coding of the foreground layer, using the FG44 chunk, 
is independent of the coding of the background layer, using the BG44 chunks.  

Each color layer is coded using a Dubuc- Deslauriers - Lemire (4, 4) Interpolative 
Wavelet Transform. Each layer of the image is transformed into a set of wavelet 
coefficients, one wavelet coefficient for each pixel in the original image. This transform 
is especially effective for coding images at high compression ratios.  

The value of each coefficient is coded in a distributed fashion, through a number of 
cycles. Within one cycle, each coefficient is updated once (that is, in only one of the l0 
bands), and receives approximately one additional bit of information. Specifically, from 
cycle to cycle the absolute value of a coefficient is first narrowed down by eliminating 
possible values for the most significant non-zero bit until the correct most significant 
non-zero bit is found. The sign is coded in the same cycle in which the most significant 
non-zero bit is found. Then in each subsequent cycle, one additional bit of the value is 
coded.  

10.3 Color chunk data headers  
A color chunk begin with a data header consisting of 2 or 9 octets, as follows:  

Serial number.  A one-octet unsigned integer. The serial number of the first chunk of a 
given chunk type is 0. Successive chunks are assigned consecutive serial numbers. 

Number of slices.  A one-octet unsigned integer. The number of slices coded in the chunk. 

Major version number and color type.  One octet containing two values, present only if 
the serial number is 0. The least significant seven bits designate the major version 
number of the standard being implemented by the decoder. For this version of the 
standard, the major version number is 1. The most significant bit is the color type bit. The 
color type bit is 0 if the chunk describes three color components. The color type bit is I if 
the chunk describes one color component.  

Minor version number. A one-octet unsigned integer, present only if the serial umber is 0. 
This octet designates the minor version number of the standard being implemented by the 
decoder. For this version of the standard, the minor version number is 2. 

Image width. A two-octet unsigned integer, most significant octet first, present only if the 
serial number is 0. This field indicates the number of pixels in each row of the image 
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described by the current chunk. The image width will be less than the width of the 
original image if the chunk describes a layer coded at lower resolution than the original 
image. For a BG44 or FG44 chunk, if W is the width of the original image specified in 
the INFO chunk, and w is the width of the image described by the current chunk, then the 
allowable values of w are:  

  
For a BM44 or PM44 chunk, there are no restrictions on the image width. 

Image height. A two-octet unsigned integer, most significant octet first, present only if 
the serial number is 0. This field indicates the number of pixels in each column of the 
image described by the current chunk. The image height will be less than the height of 
the original image if the chunk describes a layer coded at lower resolution than the 
original image. For a BG44 or FG44 chunk, if H is the height of the original image 
specified in the INFO chunk, and h is the height of the image described by the current 
chunk, then the allowable values of h are:  

 
For a BG44 or FG44 chunk, It must be the case that 

  
For a BM44 or PM44 chunk, there are no restrictions on the image width. 

Initial value of chrominance delay counter. A one-octet unsigned integer, present only if 
the serial number is 0. Only the least significant seven bits are used. The most significant 
bit is ignored, but should be set to I by an encoder. This field specifies the initial value of 
the chrominance delay counter, used as described below.  

10.4 Color chunk data  

10.4.1 Hierarchical structure of a coded color layer  
The data coded in a color chunk consists of information needed to reconstruct wavelet 
coefficients. There are one or three color components; each color component has its own 
set of wavelet coefficients. Within a color component, there are 1024 wavelet coefficients 
for each 32 x 32 block of the image. 

Within one layer (background or foreground for a DJVU Image, or the only layer for an 
IW44 Image), coding is divided into a series of slices. All the slices may be coded in one 
chunk, or they may be separated into a number of chunks. The only difference it makes 
whether the slices are coded in one chunk or in several chunks is in the order of 
progressive rendering; the final reconstructed image will be the same. The number of 
slices in each chunk is specified in the color chunk data header. One slice contains 
refinement data for one color band for each color component. Within a color component, 
all coefficients in a slice are in the same band. 
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A color chunk describes the full image at the spatial resolution implied by the image 
width and image height fields in the data header of the first chunk of the same type as the 
current color chunk. 

The sequence of color components within a slice is: first Y, then Cb, then Cr, although 
the Cb and Cr components are not present in a slice if the chunk describes grayscale data 
or if the chrominance delay counter is not equal to 0 at the time the slice is coded. 

A color band is made up of coefficient updates for all blocks in the image, but only for 
coefficients that are in the currently active band for the color component. Each block's set 
of updates within a color band is called a block band. The block bands are coded block by 
block, first from left to right within the bottom row, then by rows moving up the image, 
left to right within each row. 

Within a block band, there are 16, 64, or 256 coefficient updates. The coefficients being 
updated are divided into buckets, each bucket containing 16 coefficients. Thus, a block 
band contains 1, 4, or 16 buckets. The buckets and coefficients being updated are 
determined by the color band number according to Table 2. 

10.4.1.1 Band counting. 
The header of the first color chunk contains an initial value for the chrominance delay 
counter. It may be 0 or a positive integer. 

At the beginning of the first color chunk, the color band number for each of the three 
color components is set to 0.  

At the beginning of each slice, the chrominance delay counter is tested. If the 
chrominance delay counter is 0 and if the slice describes color image data, then all three 
color components are present. If the chrominance delay counter is greater than 0 or if the 
chunk describes grayscale image data, only the Y color component is present for the slice.  

At the end of a slice, the following actions take place:  

• The color band number is increased by 1 for the Y component. If the new color 
band number exceeds 9, it is set to 0.  

• If the chrominance delay counter is 0, the color band numbers for the Cb and C r 
components are increased by 1. If the new color band numbers exceed 9, they are 
set to 0. (Note: The color band numbers for the Cb and Cr components are always 
equal to each other.)  

• If the chrominance delay counter is greater than 0, it is decreased by 1.  

A color chunk ends when the number of slices specified in the color chunk header have 
been coded. At the beginning of each color chunk after the first for a given color layer, 
the chrominance delay counter and color band numbers retain the values they had at the 
end of the previous color chunk.  

10.4.2 Quantization of coefficients  
At each point during the decoding process, each wavelet coefficient has been determined 
to a certain precision. The current value a of the coefficient is stored, and a current step 
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size S is associated with the coefficient. The current step size for each coefficient is 
governed by a step size table. The index of the entry in the step size table that contains 
the step size for a given coefficient is given in Table 3.  

If a≠0, the coefficient is said to be "active". If a > 0, the range of possible actual values of 
the coefficient is [a - S, a + S). If a < 0, the range of possible actual values of the 
coefficient is (a - S, a + S]. If a = 0, the coefficient is not active, and the range of possible 
actual values of the coefficient is (-2S, 2S).  

When the value of a given coefficient is updated, there are three cases.  

1. If the coefficient is not active (a = 0), then there are three possibilities for the next 
current interval: (-2S,-S], (-S,S), or [S, 2S). If the coefficient remains not active, 
then the next interval is (-S, S). Otherwise, the sign of the coefficient is decoded 
to choose between the other two intervals.  

2. If the coefficient is active and a > 0, then there are two possibilities for the next 
current interval: [a - S, a) or [a, a + S). The next decision for the coefficient is the 
increase coefficient absolute value decision. If this decision is YES, then [a, a + 
S) is the next interval. If the decision is NO, then [a - S, a) is the next interval.  

3. If the coefficient is active and a < 0, then there are two possibilities for the next 
current interval: (a - S, a] or (a, a + S]. The next decision for the coefficient is the 
increase coefficient absolute value decision. If this decision is YES, then (a - S, a] 
is the next interval. If the decision is NO, then (a, a + S] is the next interval.   

Coefficient index Index into step size 
table 

0 0 

1 1 

2 2 

3 3 

4-7 4 

8-11 5 

12-15 6 

16-31 7 

32-47 8 

48-63 9 

64-127 10 

128-191 11 

192-255 12 

256-511 13 

512-767 14 
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768-1023 15 
Table 3: Step size table indices related to wavelet coefficient indices 

10.4.2.1 Initialization of step sizes 
The initial values of the step sizes are given in Table 4. There is a separate table of step 
sizes for each color component. Each color component's table is given the same initial 
values.  

10.4.2.2 Reduction of step sizes. 
Each slice contains one band of coefficient update information for each color component. 
At the end of a slice, the step sizes are divided by 2 for the current band for each color 
component. The indices of the step sizes to be reduced for each band are given in Table 5. 
For a given color band, either i or 7 step sizes are reduced.  

Non-zero step sizes are always integer powers of 2. When a step size of i is divided by 2, 
the result is set to 0.  

10.5 Coefficient updating  
Within a block band, each coefficient in the block band may be updated. A block band is 
decoded by a preliminary flag computation followed by four passes. One or more of the 
passes may be skipped or may not require any decoding, depending on conditions present 
at the beginning of the block band's coding and on tests made during the decoding of 
previous passes with the block band. The 4 passes are:  

1. Decoding the decode buckets decision for the block band. 

2. Decoding the decode coefficients decision for buckets in the block band. 

3. Decoding the activate coefficient decision for coefficients in the block band, and 
determining the sign of newly activated coefficients. 

4. Decoding the update decisions for previously active coefficients.   

 
Step size Initial Table index 

value 

0 0x04000 

1 0x08000 

2 0x08000 

3 0x10000 

4 0x10000 

5 0x10000 

6 0x20000 

7 0x20000 
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8 0x20000 

9 0x40000 

10 0x40000 

11 0x40000 

12 0x80000 

13 0x40000 

14 0x40000 

15 0x80000 
Table 4:  Initialization of step sizes 

 During the coefficient updating process, a number of binary decisions are decoded. Each 
decision is decoded using the Z´-Coder. Decoding a decision using the Z´-Coder may be 
done with a conditioning context, or it may be done using the pass-through mode of the 
Z´-Coder. For color chunk decoding, there are up to 584 conditioning contexts, that is, up 
to 294 conditioning contexts for the background layer and up to 294 conditioning 
contexts for the foreground layer. Within a layer, there are 98 conditioning contexts for 
each color component; one or three color components may be present for each layer. The 
contexts are as follows:  

• 1 context in each color component is for the decode buckets decision. 

• 80 contexts in each color component are for the decode coefficients decision, 8 
for each of the 10 bands. 

• 16 contexts in each color component are for the activate coefficient decision. 

• 1 context in each color component is for the increase coefficient absolute value 
decision.  

Band number Step size table 
indices 

0 0-6 

1 7 

2 8 

3 9 

4 10 

5 ll 

6 12 

7 13 

8 14 

9 15 
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Table 5:  Step size reduction schedule 

The coefficient sign is decoded using the pass-through mode of the Z´-Coder without a 
context. For all occurrences of the increase coefficient absolute value decision for any 
coefficient after the first such decision, the increase coefficient absolute value decision is 
coded using the pass-through mode of the Z´-Coder.  

10.5.1 Preliminary flag computation.  
Flags are computed for each coefficient in the block band, for each bucket in the block 
band, and for the block band as a whole.  

1. Flag computation for coefficients. For each coefficient in a block band, there is a 
value of the step size. For each coefficient, there are two flag values, based on the 
value of the coefficient and the value of the coefficient's step size. The flags are 
called ACTIVE and POTENTIAL. At most one of the flag values may be SET for 
a coefficient in a given cycle. If the coefficient's step size is either 0 or greater 
than or equal to 0x8000, then both flag values are CLEAR.  The two flag values 
are: 

a) ACTIVE: The coefficient's ACTIVE flag value is SET if the coefficient's 
step size is greater than 0 and less than 0x8000, and the coefficient's value 
is not 0. Otherwise the coefficient's ACTIVE flag value is CLEAR. The 
sign of the coefficient is known, and the position of the most significant 
non-zero bit of its absolute value is known.  

b) POTENTIAL: The coefficient's POTENTIAL flag value is SET if the 
coefficient's step size is greater than 0 and less than 0x8000, and the 
coefficient's value is 0. Otherwise the coefficient's POTENTIAL flag 
value is CLEAR. It is possible that the value of this coefficient will 
become non-zero during this cycle. 

2. Flag computation for buckets. Each bucket has two flag values associated with it 
depending on the flags of the 16 coefficients in the bucket. The bucket flags have 
the same names as the coefficient flags. Both, one, or neither of the bucket flags 
may be SET for a bucket in a given cycle.  

a) ACTIVE: The bucket's ACTIVE flag is SET if any of the coefficients in 
the bucket have ACTIVE flags SET . Otherwise the bucket's ACTIVE 
flag value is CLEAR. 

b) POTENTIAL: The bucket's POTENTIAL flag is SET if any of the 
coefficients in the bucket have POTENTIAL flags SET. Otherwise the 
bucket's POTENTIAL flag value is CLEAR. 

3. Flag computation for the block band. The block band has two flag values 
associated with it depending on the flags of the buckets in the block band. The 
block band flags have the same names as the bucket flags. Both, one, or neither of 
the block band flags may be SET for a block band in a given cycle. The block 
band flag values are not needed if the number of buckets in the block band is less 
than 16. 
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a) ACTIVE: The block band's ACTIVE flag is SET if any of the buckets in 
the block band have ACTIVE flags SET. Otherwise the block band's 
ACTIVE flag value is CLEAR .  

b) POTENTIAL: The block band's POTENTIAL flag is SET if any of the 
buckets in the block band have POTENTIAL flags SET. Otherwise the 
block band's POTENTIAL flag value is CLEAR .  

10.5.2 Block-band-decoding pass.  
If the block band contains fewer than 16 buckets, the block-band-decoding pass is 
skipped and the bucket decoding pass is performed. If the block band's ACTIVE flag is 
SET, the block-band-decoding pass is skipped and the bucket decoding pass is performed. 
If the block band contains 16 buckets, and if the block band's ACTIVE flag is CLEAR, 
and if the block band's POTENTIAL flag is SET, then the decode buckets decision is 
decoded. If the decode buckets decision is YES, the bucket-decoding pass is performed 
for the block band. If the decode buckets decision is NO, the bucket-decoding pass and 
the newly-active-coefficient-decoding pass are skipped for the block band.  

10.5.2.1 Arithmetic decoding. 
For each color component, there is a single context for use in decoding the decode 
buckets decision.  If the value returned by the Z´-Coder for the decode buckets decision is 
1, then the value of the decode buckets decision is YES . If the value returned by the Z´-
Coder is 0, then the value of the decode buckets decision is NO.  

The Z´-Coder context for the decode buckets decision for each color component is 
initially set to 0.  

10.5.3 Bucket-decoding pass.  
Each bucket has a flag called the coefficient-decoding flag. If the bucket-decoding pass is 
not skipped, then for each bucket in the block band, if the bucket's POTENTIAL flag is 
SET, then the decode coefficients decision for the bucket is decoded. If the the decode 
coefficients decision is YES, then the bucket's coefficient-decoding flag is SET; 
otherwise it is CLEAR. 

10.5.3.1 Arithmetic decoding.  
For each color component, there are 80 contexts for use in decoding the decode 
coefficients decision. For each of the l0 bands in a color component, there are 8 contexts. 
There are four contexts that may be used if the block band's ACTIVE  

flag is SET, and four contexts that may be used if the block band's ACTIVE flag is 
CLEAR.  The index of the context to be used among the 4 possible contexts is computed 
as follows.  

If the band number is 0, then no -- 0. Otherwise, the value of no is computed as follows:  

1. The bucket number is multiplied by 4, giving a result t. 
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2. The coefficients numbered t, t+1, t+2, t+3 are examined, and the number n0 of 
coefficients with value 0 among the four coefficients is counted.  

3. If n0 = 4, n0 is reduced to 3.  

Then the value of n0 is used as the index to one of the four contexts, for the given color 
component, band, and block band ACTIVE flag value.  If the value returned by the Z´-
Coder for the decode coefficients decision is 1, then the value of the decode coefficients 
decision is YES . If the value returned by the Z´-Coder is 0, then the value of the decode 
coefficients decision is NO 

Each of the 80 Z´-Coder contexts for the decode coefficients decision for each color 
component is initially set to 0.  

10.5.4 Newly-active-coefficient-decoding pass.  
If the newly-active-coefficient-decoding pass is not skipped, then for each bucket in the 
block band, the coefficient-decoding flag is tested. For a given bucket, if the bucket's 
coefficient- decoding flag is SET, then the following procedure is followed for each 
coefficient in the bucket: If the coefficient's POTENTIAL flag is SET, then the activate 
coefficient decision is decoded. If the the activate coefficient decision is YES, then the 
sign of the coefficient s± with value +1 or -1, is decoded. Then the coefficient is set equal 
to 

 

10.5.4.1 Arithmetic decoding. 
For each color component, there are 16 contexts for use in decoding the activate 
coefficient decision. There are eight contexts that may be used if the block's ACTIVE flag 
is SET and eight contexts that may be used if the block's ACTIVE flag is  

CLEAR.The index of the context to be used from among the 8 possible contexts is 
computed as follows:  

1. The coefficients in the bucket are examined, and the number np of them whose 
POTENTIAL flag is SET is computed.  

2. Loop through the coefficients whose POTENTIAL flag is SET. 

a. Compute ip = min(7, np).  

b. Use ip as the index into the set of 8 possible contexts, given the color 
component and value of the block's ACTIVE flag.  

c. Decode the activate coefficient decision using the context; if the activate 
coefficient decision is YES, decode the sign using the pass-through mode 
of the Z´-Coder, and set np = 0.  

d. If np> 0, decrement np by 1. 

If the value returned by the Z´-Coder for the activate coefficient decision is 1, then the 
value of the activate coefficient decision is YES. If the value returned by the Z´-Coder is 



Release Copy 

Page 41 of 71 

0, then the value of the activate coefficient decision is NO.  The decoding of the sign s± of 
a newly activated coefficient uses the pass-through mode of the Z´-Coder. If the value 
returned by the Z´-Coder is 1, then s± = -1. If the value returned by the Z´-Coder is 0, then 
s±  = +1.  

Each of the 16 Z´-Coder contexts for the activate coefficients decision for each color 
component is initially set to 0.  

10.5.5 Previously-active-coefficient-decoding pass.  
For all coefficients in the block band, the following procedure is followed: If the 
coefficient's ACTIVE flag is SET , the increase coefficient absolute value decision is 
decoded. If the decision is NO, the absolute value of the coefficient is reduced by half of 
the coefficient's step size. If the decision is YES, the absolute value of the coefficient is 
increased by half of the coefficient's step size. A step size of i is a special case. If the step 
size is i and the decision is NO, the absolute value of the coefficient is reduced by 1. If 
the step size is 1 and the decision is YES, the value of the coefficient is unchanged. 

10.5.5.1 Arithmetic decoding.  
For each color component, there is a single context for use in decoding the increase 
coefficient absolute value decision. This context is used to decode the increase coefficient 
absolute value decision if the absolute value of the coefficient is less than or equal to 3 
times the value of the step size for the coefficient. Otherwise, the pass-through mode of 
the Z´-Coder is used. (Note: the effect of this test is that only the second most significant 
bit of a coefficient's value is decoded using this context; other less significant bits are 
decoded using the pass-through mode of the Z´-Coder, with no context.)  

Whether the context or the pass-through mode is used, if the value returned by the Z´-
Coder for the increase coefficient absolute value decision is 1, then the value of the 
increase coefficient absolute value decision is YES. If the value returned by the Z´-Coder 
is 0, then the value of the increase coefficient absolute value decision is NO.  

The Z´-Coder context for the increase coefficient absolute value decision for each color 
component is initially set to 0.  

10.6 Image reconstruction  
At any time during the decoding process, an image may be reconstructed from the current 
values of the wavelet coefficients already decoded. The wavelet coefficients are stored in 
three two-dimensional arrays one for each of the Y, Cb, and Cr color components. Each 
array has one entry for each image block. Each entry itself is a 1024-element one-
dimensional array. The elements of each one-dimensional array are the wavelet 
coefficients. The wavelet coefficients are signed fixed-point numbers with six fractional 
bits.  

10.6.1 Sequence of operations  
To reconstruct the image from the coefficients, the following steps must be performed:  
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1. Reordering coefficients. For each color component, each of the 1024-element 
coefficient arrays is converted into a 32 x 32 coefficient array. These square 
coefficient arrays are embedded into a larger reconstruction array whose size is 
the size of the image. 

2. Inverse wavelet transform. For each color component, the inverse wavelet 
transform is applied to the larger reconstruction array. The inverse transform is 
applied at progressively finer scales, and within each scale in each of the two 
directions, first vertically, then horizontally. 

3. Precision reduction. For each color component, the data values in the 
reconstruction array are reduced to eight bits. Conversion to RGB color space. For 
color images, the eight-bit values of each pixel in the YCbCr color space are 
converted to the corresponding eight-bit values in the RGB color space.  

10.6.2 Coordinate system  
For indexing the blocks within a color component, the origin (0, 0) is at the lower left 
corner of the image. Horizontal indices increase rightward, and vertical indices increase 
upward.  

For indexing the coefficients within a 32 x 32 block coefficient array, the origin (0, 0) is 
at the lower left corner of the block. Horizontal indices increase rightward, and vertical 
indices increase upward.  

For indexing the coefficients and color values within the image in the reconstruction 
array, the origin (0, 0) is at the lower left corner of the image. Horizontal indices increase 
rightward, and vertical indices increase upward.  

When the array of coefficients for a block is embedded into the reconstruction array, the 
origin of the block coefficient array is placed into the lower left corner of the section of 
the reconstruction array that corresponds to the block.  

10.6.3 Reordering coefficients  
Within each color component, the coefficients in each block are moved from a 1024-
element linear array into a 32 x 32 square array. The square array from each block is 
embedded in a reconstruction array the size of the full image.  

The mapping from indices in the linear array to indices in the square array is as follows:  
if the ten bits of the index in the linear array are b9b8b7b6b5b4b3b2b1b0, b9 being the most 
significant bit of the index, then the bits of the row index of the square array are 
b1b3b5b7b9, b1 being the most significant bit of the row index, and the bits of the column  

index of the square array b0b2b4b6b8, b0 being the most significant bit of the column 
index.  

If the number of rows in the image is not a multiple of 32, then blocks along the top edge 
of the image have fewer than 32 rows. If the number of columns in the image is not a 
multiple of 32, then blocks along the right edge of the image have fewer than 32 columns. 
For all such blocks, all coefficients are coded; however, coefficients that fall outside the 
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boundary of the image after the coefficient mapping described above are never used, 
regardless of their value.  

10.6.4 Inverse wavelet transform  
The inverse transformation from wavelet coefficients to color values is done 
independently for the three color components. Within a color component the 
transformation is done for a decreasing sequence of scale parameters s. For a given scale 
parameter s, the transformation is done first for columns, then for rows. Within a column 
or row, the transformation is done in two passes, a lifting pass and then a prediction pass.  

The scale parameter's initial value is s = 16. After the vertical and horizontal 
transformations have been done with a given value of s, the value of s is divided by 2 and 
the next pair of transformations is performed. After the vertical and horizontal 
transformations have been performed with s = 1, the inverse wavelet transform for the 
color component is complete.  

The pair of transformations for a given value of s involve only rows and columns whose 
indices are multiples of s. The vertical transformation involves transforming the 
coefficients in column 0 whose row indices are multiples of s, then repeating the 
transformation for all other columns whose column indices are multiples of s. Some of 
the coefficients transformed by the vertical transformation will already have been 
transformed during earlier iterations with larger values of the scale parameter s.  

The horizontal transformation involves transforming the coefficients in row 0 whose 
column indices are multiples of s, then repeating the transformation for all other rows 
whose row indices are multiples of s. The coefficients transformed by the horizontal 
transformation will have been transformed by the vertical transformation during the first 
pass for the current scale parameter s. Some of the coefficients transformed by the 
horizontal transformation will already have been transformed during earlier iterations 
with larger values of the scale parameter s.  

To transform one column or row of coefficients: 

1. If transforming a column, select the coefficients in the current column that come 
from rows whose indices are multiples of s. The coefficient from the row whose 
index is ks is referred to as ck. The largest value of k is referred to as kmax.  

2. If transforming a row, select the coefficients in the current row that come from 
columns whose indices are multiples of s. The coefficient from the row whose 
index is ks is referred to as ck. The largest value of k is referred to as kmax. 

3. Lifting. For each even-numbered subscript k, 0≤k≤ kmax, replace coefficient ck 
with  

  
Special cases: If k - 3 < 0, use ck-3 = 0. If k - 1 < 0, use ck-1 = 0. If k + 1 > kmax, 

use ck+` = 0. If k + 3 > kmax, use ck+3 = 0 

3. Prediction. For each odd-numbered subscript k, 0≤k≤ kmax, replace coefficient ck  
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as follows: 

a) If k-3≥ 0 and k+3 ≤  kmax, replace ck with  

 
b) Otherwise if k+1 ≤ kmax, replace ck with  

 
c) Otherwise, replace ck with ck + ck-1  

10.6.5 Precision reduction for color image data  
After the inverse transformation, a color value in the reconstruction array for each color 
component is a signed fixed-point value with 6 fractional bits. This value is to be rounded 
to the nearest integer V. Then if V < -128, V is set to -128. If V≥ 128, V is set to 127. 
Finally, in the luminance (Y) color component only, V is increased by 128.  

10.6.6 Precision reduction for grayscale image data  
After the inverse transformation, a grayscale value in the reconstruction array is a signed 
fixed-point value with 6 fractional bits. This value is to be rounded to the nearest integer 
V.   Then if V<-128, V is set to -128. If V≥128, V is set to 127. Finally, V is replaced by  

127- V.  

10.6.7 Conversion from YCbCr color space to RGB color space  
For a color image, each pixel has a value in each of the color component reconstruction 
buffers. To convert a pixel's YCbCr values to the corresponding RGB values, perform the 
following transformation:  

R = Y    +(3/2)Cr  

G = Y -(1/4)Cb  -(3/4)Cr  

B = Y  +(7/4)Cb 

11 Appendix 2:  JB2 coding. 

11.1 General considerations.  
Selection layer coding is used in Compound DJVU Images. In such images, there are 
three layers. The foreground layer is coded in one FG44 chunk, and is rendered as 
described in  Appendix 1. The background layer is coded in one or more BG44 chunks, 
and is rendered as described in Appendix 1. The selection layer is coded using one Sjbz 
chunk. Black pixels in the selection layer specify those pixels that are to be rendered 
using the foreground color.  All other pixels are to be rendered using the background 
color. 

Black and white coding is used in Bi-level DJVU Images. In such images, there are three 
layers. The foreground layer is black. The background layer is white. The selection layer 
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is coded using one Sjbz chunk. The selection layer specifies those pixels that are to be 
rendered in black. All other pixels are to be rendered in white.  

An Sjbz chunk contains a single arithmetically encoded data stream, coded using the Z´-
Coder (Appendix 3). All data, including headers and record types, is coded in this 
arithmetically coded stream.  

11.2 Arithmetic coding  
The arithmetically coded data in an Sjbz chunk consists logically of records.  The record 
types are listed in Table 6, and described in Section 8.4. The records consist of fields. The 
fields present for records of each record type are listed in Table 6. The fields within a 
record are coded in the order listed in Table 6 for records of that type. Details of the 
coding for each field appear in Section 8.5.  

A field may contain one or more data elements. The data elements consist of flags, pixel 
colors, and integers. Because of the nature of arithmetic coding, the records, fields, and 
data elements are not of fixed sizes, and do not necessarily begin on bit boundaries within 
the data stream.  

Flags are binary decisions, each coded using the Z´-Coder with a particular context.  
There are two different contexts for flags, the eventual image refinement context and the 
offset type context.  

Pixel colors are binary decisions, coded using the Z´-Coder with a particular context.  For 
pixel colors, there are 3072 different contexts. There are 1024 contexts used for direct 
coding of bitmaps; these correspond to the 210 = 1024 different combinations of values 
that the pixels in the direct coding template can assume. There are 2048 contexts used for 
refinement coding of bitmaps; these correspond to the 211 = 2048 different combinations 
of values that the pixels in the refinement coding template can assume.  

Integers are coded using the multivalue extension to the Z´-Coder, described below. 
There are 15 contexts for coding multivalued integers, as described in Table 7.  

11.2.1 Initialization of the Z´-Coder  
All Z´-Coder contexts are initialized to the value 0. This applies both to contexts used to 
encode single bit values, including pixel colors, and to contexts that are part of an integer 
context used by the multivalue extension to the Z´-Coder.  

11.2.2 The multivalue extension to the Z´-Coder for coding of 
numeric data  

Quantities that can take on multiple values are coded as integers using the multivalue 
extension to the Z´-Coder. This extension of the Z´-Coder allows all data in the bitstream 
to be coded using the same coder, the Z´-Coder. There are 15 integer contexts, specified 
in Table 7. A single integer context includes a number of binary contexts.  

One integer context consists of a binary decision tree. See Figure 1 for an example of part 
of such a tree. The root node of the tree corresponds to the decision about the sign of the 
number n being decoded. Each of the two sub trees under the root corresponds to a set of 
decisions that eventually identify a range in which n lies. The sub trees under the nodes 
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corresponding to identified ranges are complete binary trees that identify the exact value 
of n. 

Each node of the binary decision tree for an integer context maintains its own binary 
probability estimation context for the Z´-Coder. The trees for different integer contexts 
are completely independent. Thus each node of a tree contains probability information 
conditioned on a conditioning context. The conditioning context consists of both the type 
of value being coded (i.e., the selection of the integer context), and of the values of the 
decisions coded so far when encoding the current integer.  

11.2.3 Record Types 
 

Record type 
coded value 

Record type Fields coded 

0 Start of image  Record type Image size 
Eventual image refinement flag 

1 New symbol, add to image and 
library 

Record type Absolute symbol 
size Bitmap by direct coding 
Location relative to a previous 
symbol 

2 New symbol, add to library only Record type Absolute symbol 
size Bitmap by direct coding 

3 New symbol, add to image only Record type Absolute symbol 
size Bitmap by direct coding 
Location relative to a previous 
symbol 

4 Matched symbol with refinement, 
add to image and library 

Record type Index of matching 
symbol in bitmap library 
Relative symbol size Bitmap by 
refinement coding Location 
relative to a previous symbol 

5 Matched symbol with refinement, 
add to library only 

Record type Index of matching 
symbol in bitmap library 
Relative symbol size Bitmap by 
refinement coding  

6 Matched symbol with refinement, 
add to image only 

Record type Index of matching 
symbol in bitmap library 
Relative symbol size Bitmap by 
refinement coding Location 
relative to a previous symbol 

7 Matched symbol, copy to image 
without refinement 

Record type Index of matching 
symbol in bitmap library 
Location relative to a previous 
symbol 

8 Non-symbol data  Record type Absolute symbol 
size Bitmap by direct coding 



Release Copy 

Page 47 of 71 

Absolute location 
9 Shared dictionary or numcoder reset Record type Shared dictionary 

size 
10 Comment Record type Comment length 

Comment data 
11 End of data Record type  

Table 6: Record types and fields coded for each record type  

11.2.4 Fields / Contexts 
Context name Integer data coded using this context 

Record type record type 
Image size  image height and image width  
matching symbol 
index  

index within the symbol library of the symbol 
matching the  

symbol width  current symbol  
symbol height  number of pixels in the width of the current symbol  
symbol width 
difference  

number of pixels in the height of the current symbol  

symbol height 
difference  

number of pixels that must be added to the width of 
the matching symbol to obtain the width of the 
current symbol  

symbol column 
number  

number of pixels that must be added to the height of 
the matching symbol to obtain the height of the 
current symbol column number of the absolute 
location of the left edge of the current symbol 
(leftmost column of the image is column number 1) 

symbol row number  row number of the absolute location of the top edge 
of the current symbol (bottom row of the image is 
row number 1) 

same line column 
offset  

number of pixels that must be added to the column 
number of the right edge of the previous symbol on 
the current text line to obtain the column number of 
the left edge of the current symbol 

same line row offset  number of pixels that must be added to the row 
number of the current baseline on the current text line 
to obtain the row number of the bottom edge of the 
current symbol 

new line column 
offset  

number of pixels that must be added to the column 
number of the left edge of the first symbol on the 
current text line to obtain the column number of the 
left edge of the current symbol 

new line row offset  number of pixels that must be added to the row 
number of the bottom edge of the first symbol on the 
current text line to obtain the row number of the top 
edge of the current symbol 
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comment length  the number of octets in the current comment  
comment octet  one octet in the current comment  
dictionary size Number of shapes in the shared dictionary. 

Table 7: Multivalued integer contexts for arithmetic coding  

11.2.5 Coding Phases 

 
Figure 1: Part of the coding tree for multisymbol arithmetic coding. Each internal node 
represents one context with its own probability information, to be used by the Z´-Coder.  
The square node at the root of the tree represents the Phase 1 decision, whether the 
integer n being coded is negative. The filled circles are the Phase 2 nodes, moving down 
the tree in ever-increasing ranges. The open circles represent Phase 3 decisions, 
traversing a complete binary subtree to reach the specific value of n. A decoded value of 
0 indicates a left branch in this tree. A decoded value of 1 indicates a right branch.   

This method allows high compression efficiency by allowing the coder to adapt to the 
statistics of the data. In effect, the binary probability information stored collectively in 
the nodes of the decision tree closely approximates the probability distribution of the 
underlying multi-valued integer. 

The allowable range of values for n is always specified. The smallest value that n could 
possibly take is denoted by 1. The largest number that n could possibly take is denoted by 
h. When 1 and h are equal, n is equal to both of them, and no Z´-Coder decoding is 
performed.    

The decoder maintains a non-negative intermediate value v, defined as follows:  

 
At the end of the process of decoding an integer, v is converted to n, the value of the 
decoded integer.  

The value of an integer is coded by making a sequence of binary decisions, each one 
narrowing the set of possible values that the integer can possibly take. The decisions are 
based on traversing a binary decision tree to one of its leaves. Note: although the tree 
conceptually has a large number of nodes, it is possible in an implementation to allocate 
memory only for those nodes actually traversed.  Decoding proceeds in four phases.  
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11.2.5.1 Phase 1. 
Phase 1 determines the sign of n. A value of 0 returned by the Z´-Coder means that n < 0. 
A value of 1 returned by the Z´-Coder means that n _> 0.  

11.2.5.2 Phase 2.  
Phase 2 determines a range of possible values for v. The Z´-Coder is invoked repeatedly 
to answer the question "Is the value of v in the range being tested?"  The sequence of 
ranges tested is given in Table 8. A value of 0 returned by the Z´-Coder means  that v is 
not in the specified range, and the next range in the sequence must be tested. A value of 1 
returned by the Z´-Coder means that v is in the specified range, and decoding is to 
proceed to Phase 3.  

0 

1-2 

3-6 

7-14 

15-30 

31-62 

63-126 

127-254 

255-510 

511-1022 

1023-2046 

2047-4094 

4095-8190 

8191-16382 

16383-32766 

32767-65534 

65535-131070 

131071-262142 

Table 8: Sequence of ranges in which v may fall.  

11.2.5.3 Phase 3.  
Phase 3 consists of determining the exact value of v within the range determined in Phase 
2. If Phase 2 determined that v -- 0, then Phase 3 is skipped.  Otherwise, since the size of 
the range is a power of 2, the corresponding subtree is a complete binary tree. The 
sequence of coding decisions is based directly on traversing the binary tree. At each node, 
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0 returned by the Z´-Coder means left branch (smaller values of v) and I means right 
branch (larger values of v). The bits returned by the Z´-Coder during Phase 3 are the bits 
of v, most significant bit first.  

11.2.5.4 Phase 4.  
In Phase 4, the unsigned value v is converted to n, the signed value to  

be returned, as follows:  

 
In any of the phases, if the input values of 1 and h (the range of allowable values) 
predetermine any decision, then the coding for that decision is not performed; the 
predetermined decision is assumed.  

Each type of integer has its own set of binary contexts. Thus the probability information 
will reflect the underlying probability distribution of the particular type of integer. The 
Z´-Coder probability state indices of all the binary nodes are initialized to 0.  

11.3 Image reconstruction  
Records in an Sjbz chunk are interpreted in the order in which they appear. A start of data 
record specifies the dimensions of the image. An image refinement data record indicates 
the end of the Sjbz chunk. An end of data record indicates the end of the Sjbz chunk. A 
comment record contains uninterpreted data.  

A record identified by any other record type describes one bitmap. The model used in 
DjVu for the selection layer is based on symbol-based coding. Bitmaps are placed into 
the reconstructed image as follows: The image is initially entirely white. When a bitmap 
is placed into the image, the pixels that are black in the current symbol become black at 
the appropriate position in the reconstructed image. Once a pixel in the reconstructed 
image becomes black, it remains black.  

Because symbols in document images are often similar to each other, it is often possible 
to obtain more efficient coding by making use of previously coded symbols. As symbols 
are decoded, their bitmaps may be placed into a symbol bitmap library. There is exactly 
one symbol bitmap library. Once a symbol has been placed into the symbol bitmap 
library, later records may cause copies of the symbol to be placed into the image, or may 
define a new bitmap by refining the bitmap in the library.  

Depending on the record type, the symbol bitmap may be described by direct coding, by 
refinement coding, or by a copy operation. In direct coding, all pixels of the bitmap are 
coded directly, without reference to any other bitmap. In refinement coding, all pixels of 
the bitmap are also coded directly, but a bitmap in the library is used to make the coding 
more efficient. In a copy operation, the pixels of the bitmap are the same as the pixels of 
a bitmap in the library.  

Depending on the record type, the bitmap may or may not be placed into the image. If the 
bitmap is placed into the image, then depending on the record type, it may be placed 
either at an absolute location or at a location relative to a previously placed bitmap.  
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Depending on the record type, the bitmap may or may not be placed into the symbol 
bitmap library. The first symbol placed into the library has index 0. Subsequent symbols 
are assigned consecutive integer indices.  

The pixels of the reconstructed image are arranged in a rectangular coordinate system.  
For the pixel in the lower left corner of the image, the column number is i and the row 
number is 1. All coordinates refer to the pixels themselves, not to the edges between 
pixels.  

11.4 Records  
Records in Sjbz chunks have the following interpretations.  

11.4.1 Start of image  
A start of image record is the first record in an Sjbz chunk. the image.  It specifies the 
dimensions of the image 

11.4.2 New symbol, add to image and library  
A new symbol, add to image and library record specifies the bitmap of a symbol that is 
coded directly and placed into the reconstructed image and into the symbol bitmap library.  

11.4.3 New symbol, add to library only  
A new symbol, add to library only record specifies the bitmap of a symbol that is coded 
directly and placed into the symbol bitmap library but not into the image.  

11.4.4 New symbol, add to image only  
A new symbol, add to image only record specifies the bitmap of a symbol that is coded 
directly and placed into the reconstructed image but not into the symbol bitmap library.  

11.4.5 Matched symbol with refinement, add to image and library  
A matched symbol with refinement, add to image and library record specifies the bitmap 
of a symbol that is coded by refinement of a symbol in the symbol bitmap library and 
placed into the reconstructed image and into the symbol bitmap library.  

11.4.6 Matched symbol with refinement, add to library only  
A matched symbol with refinement, add to library only record specifies the bitmap of a 
symbol that is coded by refinement of a symbol in the symbol bitmap library and placed 
into the symbol bitmap library, but not into the reconstructed image.  

11.4.7 Matched symbol with refinement, add to image only  
A matched symbol with refinement, add to image only record specifies the bitmap of a 
symbol that is coded by refinement of a symbol in the symbol bitmap library and placed 
into the reconstructed image, but not into the symbol bitmap library.  
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11.4.8 Matched symbol, copy to image without refinement  
A matched symbol, copy to image without refinement record specifies the location at 
which the bitmap of a symbol in the symbol bitmap library is to be placed into the 
reconstructed image.  

11.4.9 Non-symbol data  
A non-symbol data record specifies a direct coded bitmap to be placed at an absolute 
location in the reconstructed image. A bitmap of non-symbol data is not placed into the 
symbol bitmap library.  

11.4.10 Shared dictionary or reset  
This record is overloaded and its meaning depends on its context.  If the record occurs 
before a START_OF_DATA, then this ia a REQUIRED_DICT records.  If the record 
occurs after a START_OF_DATA record then this is a NUMCODER_RESET record. 

11.4.10.1 Shared Shape Dictionaries 
Starting with version 21, the JB2 format provides support for sharing symbol definitions 
between the pages of a document.  To achieve this objective, the JB2 image data chunk 
must be able to address symbols defined elsewhere by a JB2 dictionary data chunk shared 
by all the pages of a document. 

A #REQUIRED_DICT_OR_RESET# (9) record type can appear before the 
#START_OF_DATA# (0) record.  The record type field is followed by a single number 
arithmetically encoded using the sixteenth “dictionary size” context.  This record appears 
when the JB2 data chunk requires symbols encoded in a separate JB2 dictionary data 
chunk.  The number (the dictionary size) indicates how many symbols should have been 
defined by the JB2 dictionary data chunk.  The decoder should simply load these symbols 
in the symbol library and proceed as usual.  New symbols potentially defined by the 
subsequent JB2 image data records will therefore be numbered with integers greater or 
equal than the dictionary size. 

11.4.10.2 Numcoder Reset 
The encoding of numbers potentially uses an unbounded number of binary coding 
contexts. These contexts are normally allocated when they are used for the first time (see 
ICFDD informative note, page 27). 

Starting with version 21, a #REQUIRED_DICT_OR_RESET# (9) record type can appear 
after the #START_OF_DATA# (0) record.  The decoder should proceed with the next 
record after clearing all binary contexts used for coding numbers.  This operation implies 
that all binary contexts previously allocated for coding numbers can be deallocated. 

Starting with version 21, the JB2 encoder should insert a 
#REQUIRED_DICT_OR_RESET# record type whenever the number of these allocated 
binary contexts exceeds #20000#.  Only very large documents ever reach such a large 
number of allocated binary contexts (e.g large maps).  Hardware implementation 
however can benefit greatly from a hard bound on the total number of binary coding 
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contets.  Old JB2 decoders will treat this record type as an #END_OF_DATA# record 
and cleanly stop decoding (see ICFDD page 30, Image refinement data). 

11.4.10.3 Record Types in a Shared Dictionary 
The shared JB2 dictionary data format is a pure subset of the JB2 image data format:   

• REQUIRED_DICT (9) 
• START_OF_DATA (0) 
• NEW_MARK_LIBRARY_ONLY (2) 
• MATCHED_REFINE_LIBRARY_ONLY (5) 
• NUMCODER_RESET (9) 
• PRESERVED_COMMENT (10) 
• END_OF_DATA (11) 

Note that each shared dictionary can itself include another shared dictionary. 

The JB2 dictionary data is usually located in an Djbz chunk. Each page FORM:DJVU 
may directly contain a Djbz chunk, or may indirectly point to such a chunk using an 
INCL chunk (see Multipage DjVu documents.) 

11.4.11 Comment  
A comment record contains data whose interpretation is not specified by the standard.  

11.4.12 End of data  
An end of data record is the last record of an Sjbz chunk.  

11.5 Fields  
The following fields are coded in records of types specified in Table 6 and in Section 8.4.  

11.5.1 Record type  
The record type is coded by the multivalue extension to the Z´-Coder using the record 
type context. The range of allowable record types is from 0 to 11. The coded values are 
specified in the first column of Table 6.  

11.5.2 Image size  
The width and height of the image are coded by the multivalue extension to the Z´-Coder 
using the image size context. The width is coded first, then the height. The range of 
allowable values is from 0 to 262142. The width and height of a Compound DJVU Image 
or Bilevel DJVU Image must be the same as the width and height of the image specified 
in the INFO chunk.  

11.5.3 Eventual image refinement flag  
The EVENTUAL IMAGE REFINEMENT flag is coded once, in the start of image 
record, to notify the decoder whether image refinement data will eventually be provided. 
It is a binary value, coded by the Z´-Coder using the eventual image refinement context. 
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The coded value 1 means TRUE and the coded value 0 means FALSE. Note: This flag is 
always FALSE in the current version of the standard, but it may be TRUE in later 
versions. 

11.5.4 Index of matching symbol in bitmap library  
The index of the matching symbol in the bitmap library is coded with the multivalue 
extension to the Z´-Coder, using the matching symbol index context. The range of 
allowable values is from 0 to one less than the number of symbols currently in the bitmap 
library.  

11.5.5 Absolute symbol size  
The width of a symbol is coded by the multivalue extension to the Z´-Coder, using the 
symbol width context. Then the height of a symbol is coded by the multivalue extension 
to the Z´-Coder, using the symbol height context. The range of allowable values for both 
of these data elements is from 0 to 262142.  

11.5.6 Relative symbol size  
The signed differences between the width and height of the current symbol and the width 
and height respectively of the matching symbol are coded by the multivalue extension to 
the Z´-Coder using the symbol width difference context for the width and using the 
symbol height difference context for the height. The width difference is coded first, then 
the height difference. The coded signed difference is added to the width or height of the 
matching symbol to obtain the width or height respectively of the current symbol. The 
range of allowable values for both of these data elements is -262143 to 262142.  

11.5.7 Absolute location  
The horizontal and vertical positions of the upper left corner of the bitmap are coded by 
the multivalue extension to the Z´-Coder using the symbol column number context for 
the horizontal position and the symbol row number context for the vertical position. The 
horizontal position is coded first, then the vertical position. The range of allowable values 
for the horizontal position is from i to the number of pixels in the width of the image. The 
range of allowable values for the vertical position is from i to number of pixels in the 
height of the image.  

11.5.8 Location relative to a previous symbol  
The OFFSET TYPE flag is coded by the Z´-Coder using the offset type context. It 
indicates the reference symbol for coding the offset of the location of the current symbol. 
The coded value 1 means FIRST, which means that the location of the current symbol is 
being specified relative to the first symbol on the current text line. The value 0 means 
PREVIOUS, which means that the location of the current symbol is being specified 
relative to the most recently coded symbol on the current text line.  

If the OFFSET TYPE flag is FIRST,then the reference symbol is the first symbol on the 
current text line. The horizontal offset is the signed difference between the left edge of 
the current symbol and the left edge of the reference symbol. It is coded with the 
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multivalue extension to the Z´-Coder using the new line column offset context. The 
coded signed difference is added to the column number of the left edge of the reference 
symbol to obtain the column number of the left edge of the current symbol. The vertical 
offset is the signed difference between the top edge of the current symbol and the bottom 
edge of the reference symbol. It is coded by the multivalue extension to the Z´-Coder 
using the new line row offset context. The coded signed difference is added to the row 
number of the bottom of the reference symbol to obtain the row number of the top edge 
of the current symbol. The current symbol is then treated as the first symbol of a new text 
line. In this case, the horizontal offset is coded first, then the vertical offset.  

If the OFFSET TYPE flag is PREVIOUS, then the reference symbol is the most recently 
coded symbol on the current text line. The horizontal offset is the signed difference 
between the left edge of the current symbol and the right edge of the reference symbol. It 
is coded by the multivalue extension to the Z´-Coder using the same line column offset 
context. The coded signed difference is added to the column number of the right edge of 
the reference symbol to obtain the column number of the left edge of the current symbol. 
The vertical offset is the signed difference between the bottom edge of the current symbol 
and the current baseline. The current baseline is the median of the bottom edges of the 
three most recently coded symbols on the current line, if there are at least three symbols 
on the current line. If there are fewer than three previously coded symbols on the current 
line, the baseline is the bottom edge of the first symbol on the current line. The vertical 
offset is coded by the multivalue extension to the Z´-Coder using the same line row offset 
context. The coded signed difference is added to the row number of the current baseline 
to obtain the row number of the bottom edge of the current symbol. In this case, the 
horizontal offset is coded first, then the vertical offset.  

The first symbol in the image is coded as if it were relative to the first symbol on the 
current text line. The pixel in the upper left corner of the image is taken to be the bottom 
left corner of this "first symbol." Then the first symbol in the image is treated as the first 
symbol of a new text line.  

11.5.9 Bitmap by direct coding  
Non-symbol bitmaps and symbol bitmaps with no sufficiently closely matching symbol 
in the symbol library are coded directly. A directly coded bitmap is coded by repeated 
applications of the Z´-Coder to the pixels of the bitmap left to right across the rows, 
starting with the top row. When one row has been coded, the next lower row is coded. 
Each pixel is coded by the Z´-Coder using an appropriate context based on the values of 
10 previously coded pixels. A coded value of 1 means the pixel is BLACK. A coded 
value of 0 means the pixel is WHITE.  The colors of the pixels numbered 1 through 10 in 
Figure 2, taken collectively,  

form a 10-bit value. Each of these values is an index into a table of 1024 different direct 
coded bitmap contexts. The pixel labeled P in Figure 2 is coded using the context indexed 
by the collective values of the other 10 numbered pixels in the template.  
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Figure 2: Template for direct coding  

Pixels outside the bounding box of the bitmap being coded are considered to be white.  

11.5.10 Bitmap by refinement coding  
Some bitmaps are coded by making use of data from another bitmap; this process is 
called refinement coding. Matched symbols other than those to be copied are coded using 
refinement coding.  

A bitmap coded by refinement coding is coded by repeated applications of the Z´-Coder 
to the pixels of the bitmap left to right across the rows. When one row has been coded, 
the next lower row is coded. Each pixel is coded by the Z´-Coder using an appropriate 
context based on the values of 4 previously coded pixels from the bitmap being coded 
and 7 pixels from the matching bitmap. (The pixels numbered 1 through 4 in Figure 3 are 
from the current symbol; the pixels numbered 5 through 11 are from the matching 
symbol.) A coded value of 1 means the pixel is BLACK. A coded value of 0 means the 
pixel is WHITE. The colors of the pixels numbered 1 through 11 in Figure 3, taken 
collectively, form an 11-bit value. Each of these values is an index into a table of 2048 
different refinement coded bitmap contexts. The pixel labeled P in Figure 3 is coded 
using the context indexed by the collective values of the 11 numbered pixels in the 
template. Pixel 7 is in the position in the matching symbol that corresponds to the 
position of pixel P in the current symbol when the two symbols are aligned.  

Alignment of the current bitmap and the matching bitmap proceeds as follows. For 
matched symbols, the current symbol and the matching symbol are aligned according to 
the geometric centers of their bounding rectangles. If the number of columns or rows is 
even, the geometric center falls between two columns or rows, respectively. In this case, 
the leftmost of the two central columns or the lowermost of the two central rows is 
considered to be the center column or row, respectively.  

 
Figure 3: Template for refinement coding. (a) Pixels from symbol being coded from 
matching symbol. (b) Pixels from matching symbol. 

It is possible for the current symbol to have empty edge rows or columns. These empty 
rows and columns are coded, and are included in the bounding rectangle. For symbols 
added to the library, the symbol is added to the library after if has been placed into the 
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image. Any empty edge rows and columns are removed before the symbol is added to the 
library.  

11.5.11 Comment length  
The comment length is the number of octets in the comment. It is coded by the 
multivalue extension to the Z´-Coder using the comment length context. The range of 
allowable values for the comment length is from 0 to 262142.  

11.5.12 Comment data  
Comment data consists of the individual octets of the comment. The number of octets in 
the comment is given by the comment length field. Each of the octets is coded using the 
multivalue extension to the Z´-Coder using the comment octet context. The range of 
allowable values for each octet is from 0 to 255. 

12 Appendix 3:  Z´coding. 
The Z´-Coder is an approximate binary arithmetic coder. Decoding proceeds as follows.  

See also file ZPCodec.h and ZPCodec.cpp in DjVuLibre. 

12.1 Registers and data storage  
In Figure 1 and Figure 2, the values of variables A, C, D, and Z are stored in registers of 
at least 16 bits each. A and C retain their values between invocations of the Z´-Coder. 
The values of D and Z are recomputed during each invocation of the Z´-Coder. Note: If 
register overflow can be ignored, storing variables A and C in registers of exactly 16 bits 
allows a simplification of lines 11, 12, 16, and 17 of Figure 1 and lines 8, 9, 12, and 13 of 
Figure 2.  

At the beginning of a chunk, the values of A and C are reinitialized. When the decoder is 
decoding a chunk, it may require more bits than are present within the chunk's data. In 
this case, all additional required bits are to be assumed by the decoder to be 1. If there are 
excess bits at the end of a chunk, they are ignored.  

K is conceptually an array with a single 8-bit entry for each binary decision context. 
(Inpractice, K consists of a number of individual values, arrays, and tree nodes, but each 
one has a specific address and a single 8-bit value at any time.) This array is indexed by 
the value of i, which is the input to the decoder. K(i) is the current value of the 
probability state index for context i. K(i) may be updated as part of the decoding process.  

In pass-through mode, the decoder is invoked with no input argument. No context is 
involved.  

B is the 1-bit value returned by the decoder.  

The Z´-Coder is state-based. Decoding is governed by 4 fixed tables, given in Table 9.  
The tables are indexed by K(i), the probability state index for the current context. All 
probability state indices are initialized to 0. That is, at the beginning of coding, for all i, 
K(i) = 0. These values are not reinitialized at the beginning of chunks after the first.  
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The more probable symbol is denoted by MPS. The MPS is 1 if the probability state 
index is an odd integer, and 0 if the probability state index is an even integer. The less 
probable symbol is denoted by LPS. The LPS is 0 if the probability state index is an odd 
integer, and 1 if the probability state index is an even integer.  

∆k is the amount by which the current arithmetic coding interval is reduced if the decoded 
symbol is the MPS. θk is the threshold above which an MPS triggers a probability state 
update.  µk is the next probability state index for context k after an MPS triggers a 
probability state index update. An LPS always triggers a probability state index update. 
λk is the next probability state index for context k after an LPS.  

12.2 Initialization  
Initially, A is set to 0x0000. Two octets are read from the input data stream into the 
lowest 16 bits of C. If the bits of C are numbered such that bit 15 is the most significant 
bit and bit 0 is the least significant bit, then the first input octet is stored in bits 15 
through 8, and the second input octet is stored in bits 7 through 0.  

12.3 Decoding  
Figure 1 shows the steps involved in decoding a single binary decision. The input to the 
decoder is the index i of the appropriate context for the binary decision being decoded. 
The output from the decoder is a single bit B.  

12.3.1 Notes on specific lines of Figure 1  
Line 2. The division is a right shift, discarding the two least significant bits.  

Lines 4-8. These lines are executed when the decoded bit is the MPS.  

Line 5. This line determines the value of MPS from the odd/even parity of the probability 
state index.  

Line 6. Sometimes an MPS event triggers an update of the probability state index, based 
on the value of θk. Note that when the probability state index k = 0 or k ≥ 83, θk = 0, so an 
MPS will trigger an update of the probability state index. All probability state indices are 
initialized to 0, but the first coded decision for a context causes the index to become 
larger than 83. When k = 0 or k ≥ 83, the probability estimate for the context is in its 
early estimation phase. When 0≤ k≤ 83, the probability estimate for the context is in its 
steady state phase, which it never leaves.  

Lines 9-14. These lines are executed when the decoded bit is the LPS.  

Line 10. This line determines the value of LPS from the odd/even parity of the 
probability state index.  

Line 13. An LPS always triggers an update of the probability state index.  

Lines 15-18. When the values in the registers are too large, they must be renormalized.  

Lines 1ti-17. A+A and C+C may be accomplished by left shifts, leaving the least 
significant bit equal to 0.  

Line 17. The least significant bit of C is filled with the next bit from the input stream.  
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Bits are taken from each octet in the input stream most significant bit first.  

 

 
Figure 1:  Decoder for Z´-Coder 

12.4 Pass-through decoding  
Figure 2 shows the steps involved in decoding a single binary decision using the Z´-
Coder in pass-through mode. No input is required. No context is involved. No probability 
state index values are updated. The output from the decoder is the single bit B.  

12.4.1 Notes on specific lines of Figure 2 
Line 1. The division is a right shift, discarding the three least significant bits.  

Lines 2-5. These lines are executed when the decoded bit is 0.  

Lines 11-10. These lines are executed when the decoded bit is 1.  

Lines 11-14. When the values in the registers are too large, they must be renormalized.  

Lines 12-13. A+A and C+C may be accomplished by left shifts, leaving the least 
significant bit equal to 0.  

Line 13. The least significant bit of C is filled with the next bit from the input stream.  
Bits are taken from each octet in the input stream most significant bit first.  
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Figure 2:  Decoder for Z´-Coder operating in pass-through mode. 
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k ∆k θk µk λk 

0 0x8000 0x0000 84 145
1 0x8000 0x0000 3 4 
2 0x8000 0x0000 4 3 
3 0x6BBD 0x10A5 5 1 
4 0x6BBD 0x10A5 6 2 
5 0x5D45 0x1F28 7 3 
6 0x5D45 0x1F28 8 4 
7 0x51B9 0x2BD3 9 5 
8 0x51B9 0x2BD3 10 6 
9 0x4813 0x36E3 11 7 
10 0x4813 0x36E3 12 8 
11 0x3FD5 0x408C 13 9 
12 0x3FD5 0x408C 14 10 
13 0x38B1 0x48FD 15 11 
14 0x38B1 0x48FD 16 12 
15 0x3275 0x505D 17 13 
16 0x3275 0x505D 18 14 
17 0x2CFD 0x56D0 19 15 
18 0x2CFD 0x56D0 20 16 
19 0x2825 0x5C71 21 17 
20 0x2825 0x5C71 22 18 
21 0x23AB 0x615B 23 19 
22 0x23AB 0x615B 24 20 
23 0x1F87 0x65A5 25 21 
24 0x1F87 0x65A5 26 22 
25 0x1BBB 0x6962 27 23 
26 0x1BBB 0x6962 28 24 
27 0x1845 0x6CA2 29 25 
28 0x1845 0x6CA2 30 26 
29 0x1523 0x6F74 31 27 
30 0x1523 0x6F74 32 28 
31 0x1253 0x71E6 33 29 
32 0x1253 0x71E6 34 30 
33 0x0FCF 0x7404 35 31 

k ∆k θk µk λk 

34 0x0FCF 0x7404 36 32
35 0x0D95 0x75D6 37 33
36 0x0D95 0x75D6 38 34
37 0x0B9D 0x7768 39 35
38 0x0B9D 0x7768 40 36
39 0x09E3 0x78C2 41 37
40 0x09E3 0x78C2 42 38
41 0x0861 0x79EA 43 39
42 0x0861 0x79EA 44 40
43 0x0711 0x7AE7 45 41
44 0x0711 0x7AE7 46 42
45 0x05F1 0x7BBE 47 43
46 0x05F1 0x7BBE 48 44
47 0x04F9 0x7C75 49 45
48 0x04F9 0x7C75 50 46
49 0x0425 0x7DOF 51 47
50 0x0425 0x7DOF 52 48
51 0x0371 0x7D91 53 49
52 0x0371 0x7D91 54 50
53 0x02D9 0x7DFE 55 51
54 0x02D9 0x7DFE 56 52
55 0x0259 0x7E5A 57 53
56 0x0259 0x7E5A 58 54
57 0x01ED 0x7EA6 59 55
58 0x01ED 0x7EA6 60 56
59 0x0193 0x7EE6 61 57
60 0x0193 0x7EE6 62 58
61 0x0149 0x7F1A 63 59
62 0x0149 0x7F1A 64 60
63 0x010B 0x7F45 65 61
64 0x010B 0x7F45 66 62
65 0x00D5 0x7F6B 67 63
66 0x00D5 0x7F6B 68 64
67 0x00A5 0x7F8D 69 65
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k ∆k θk µk λk 

68 0x00A5 0x7F8D 70 66 
69 0x007B 0x7FAA 71 67 
70 0x007B 0x7FAA 72 68 
71 0x0057 0x7FC3 73 69 
72 0x0057 0x7FC3 74 70 
73 0x003B 0x7FD7 75 71 
74 0x003B 0x7FD7 76 72 
75 0x0023 0x7FE7 77 73 
76 0x0023 0x7FE7 78 74 
77 0x0013 0x7FF2 79 75 
78 0x0013 0x7FF2 80 76 
79 0x0007 0x7FFA 81 77 
80 0x0007 0x7FFA 82 78 
81 0x0001 0x7FFF 81 79 
82 0x0001 0x7FFF 82 80 
83 0x5695 0x0000 9 85 
84 0x24EE  0x0000 86 226
85 0x8000  0x0000 5 6 
86 0x0D30  0x0000 88 176
87 0x481A  0x0000 89 143
88 0x0481  0x0000 90 138
89 0x3579  0x0000 91 141
90 0x017A  0x0000 92 112
91 0x24EF  0x0000 93 135
92 0x007B  0x0000 94 104
93 0x1978  0x0000 95 133
94 0x0028  0x0000 96 100
95 0xl0CA  0x0000 97 129
96 0x000D  0x0000 82 98 
97 0x0BSD  0x0000 99 127
98 0x0034  0x0000 76 72 
99 0x0Y8A  0x0000 101 125
100 0x00A0  0x0000 70 102
101 0x050F  0x0000 103 123

k ∆k θk µk λk 
102 0x0117  0x0000 66 60 
103 0x0358  0x0000 105 121
104 0x01EA 0x0000 106 110
105 0x0234  0x0000 107 119
106 0x0144 0x0000 66 108
107 0x0173 0x0000 109 117
108 0x0234 0x0000 60 54 
109 0x00F5 0x0000 111 115
110 0x0353 0x0000 56 48 
111 0x00A1 0x0000 69 113
112 0x05C5  0x0000 114 134
113 0x011A  0x0000 65 59 
114 0x03CF  0x0000 116 132
115 0x01AA 0x0000 61 55 
116 0x0285  0x0000 118 130
117 0x0286  0x0000 57 51 
118 0x01AB 0x0000 120 128
119 0x03D3  0x0000 53 47 
120 0x011A  0x0000 122 126
121 0x05C5  0x0000 49 41 
122 0x00BA 0x0000 124 62 
123 0x0SAD 0x0000 43 37 
124 0x007A  0x0000 72 66 
125 0x0CCC 0x0000 39 31 
126 0x01EB 0x0000 60 54 
127 0x1302 0x0000 33 25 
128 0x02E6 0x0000 56 50 
129 0x1B81 0x0000 29 131
130 0x045E 0x0000 52 46 
131 0x24EF 0x0000 23 17 
132 0x0690 0x0000 48 40 
133 0x2865 0x0000 23 15 
134 0x09DE 0x0000 42 136
135 0x3987 0x0000 137 7 
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k ∆k θk µk λk 
136 0x0DC8 0x0000 38 32 
137 0x2C99 0x0000 21 139
138 0x10CA 0x0000 140 172
139 0x3B5F 0x0000 15 9 
140 0x0B5D 0x0000 142 1?0
141 0x5695 0x0000 9 85 
142 0x078A 0x0000 144 168
143 0x8000 0x0000 141 248
144 0x050F 0x0000 146 166
145 0x24EE 0x0000 147 247
146 0x0358 0x0000 148 164
147 0x0D30 0x0000 149 197
148 0x0234 0x0000 150 162
149 0x0481 0x0000 151 95 
150 0x0173 0x0000 152 160
151 0x01?A 0x0000 153 173
152 0x00F5 0x0000 154 158
153 0x007B 0x0000 155 165
154 0x00A1 0x0000 70 156
155 0x0028 0x0000 157 161
156 0x011A 0x0000 66 60 
157 0x000D 0x0000 81 159
158 0x01AA 0x0000 62 56 
159 0x0034 0x0000 75 71 
160 0x0286 0x0000 58 52 
161 0x00A0 0x0000 69 163
162 0x03D3 0x0000 54 48 
163 0x011? 0x0000 65 59 
164 0x05C5 0x0000 50 42 
165 0x01EA 0x0000 167 171
166 0x08AD 0x0000 44 38 
167 0x0144 0x0000 65 169
168 0x0CCC 0x0000 40 32 
169 0x0234 0x0000 59 53 

k ∆k θk µk λk 
170 0x1302 0x0000 34 26 
171 0x0353 0x0000 55 47 
172 0x1B81 0x0000 30 174
173 0x05C5 0x0000 175 193
174 0x24EF 0x0000 24 18 
175 0x03CF 0x0000 177 191
176 0x2B74 0x0000 178 222
177 0x0285 0x0000 179 189
178 0x201D 0x0000 180 218
179 0x01AB 0x0000 181 187
180 0x1715 0x0000 182 216
181 0x011A 0x0000 183 185
182 0x0FB7 0x0000 184 214
183 0x00BA 0x0000 69 61 
184 0x0A67 0x0000 186 212
185 0x01EB 0x0000 59 53 
186 0x06E7 0x0000 188 210
187 0x02E6 0x0000 55 49 
188 0x0496 0x0000 190 208
189 0x045E 0x0000 51 45 
190 0x030D 0x0000 192 206
191 0x0690 0x0000 47 39 
192 0x0206 0x0000 194 204
193 0x09DE 0x0000 41 195
194 0x0155 0x0000 196 202
195 0x0D½8 0x0000 37 31 
196 0x00E1 0x0000 198 200
197 0x2B74 0x0000 199 243
198 0x0094 0x0000 72 64 
199 0x201D 0x0000 201 239
200 0x0188 0x0000 62 56 
201 0x1715 0x0000 203 237
202 0x0252 0x0000 58 52 
203 0x0FB7 0x0000 205 235
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k ∆k θk µk λk 
204 0x0383 0x0000 54 48 
205 0x0A67 0x0000 207 233
206 0x0547 0x0000 50 44 
207 0x06E7 0x0000 209 231
208 0x07E2 0x0000 46 38 
209 0x0496 0x0000 211 229
210 0x0BC0 0x0000 40 34 
211 0x030D 0x0000 213 227
212 0x1178 0x0000 36 28 
213 0x0206 0x0000 215 225
214 0x19DA 0x0000 30 22 
215 0x0155 0x0000 217 223
216 0x24EF 0x0000 26 16 
217 0x00E1 0x0000 219 221
218 0x320E 0x0000 20 220
219 0x0094 0x0000 71 63 
220 0x432A 0x0000 14 8 
221 0x0188 0x0000 61 55 
222 0x447D 0x0000 14 224
223 0x0252 0x0000 57 51 
224 0x5ECE 0x0000 8 2 
225 0x0383 0x0000 53 47 
226 0x8000 0x0000 228 87 
227 0x0547 0x0000 49 43 
228 0x481A 0x0000 230 246

k ∆k θk µk λk 
229 0x07E2 0x0000 45 37 
230 0x3579 0x0000 232 244
231 0x0BC0 0x0000 39 33 
232 0x24EF 0x0000 234 238
233 0x1178 0x0000 35 27 
234 0x1978 0x0000 138 236
235 0x19DA 0x0000 29 21 
236 0x2865 0x0000 24 16 
237 0x24EF 0x0000 25 15 
238 0x3987 0x0000 240 8 
239 0x320E 0x0000 19 241
240 0x2C99 0x0000 22 242
241 0x432A 0x0000 13 7 
242 0x3B5F 0x0000 16 10 
243 0x447D 0x0000 13 245
244 0x5695 0x0000 10 2 
245 0x5ECE 0x0000 7 1 
246 0x8000 0x0000 244 83 
247 0x8000 0x0000 249 250
248 0x5695 0x0000  10 2 
249 0x481A 0x0000  89 143
250 0x481A 0x0000  230 246

 

13 Appendix 4:  BZZ coding 
Numerous streams in the DjVu file format are compressed using the general purpose 
compressor described here called BZZ.  BZZ transforms the input data using the well 
documented Burrows-Wheeler Transform.  However, the traditional “Move To Front” 
permutation table is augmented with a frequency estimation provided by the ZPCoder. 

See also file BSByteStream.cpp. 

13.1 Encoding 
BZZ first takes as input a 24 bit integer as block size between 10K and 4M and an input 
stream (to be compressed).  The stream is partitioned into blocks terminated with a 
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special <EOB> symbol.  It is then transformed using the well-documented Burrows-
Wheeler (BW or “block sorting”) transform.  Then, one block at a time, the block size 
and resulting output stream are then passed as input to the compressed using the Z´-Coder 
(Appendix 3). 

13.2 Decoding 
We describe the decoding algorithm by means of pseudo-code. 

13.2.1 Decoding pseudo code 

13.2.1.1 Z´-Coder utilities 
// -------------------------------------- 
// decode one bit with the pass-thru mode  
 
FUNCTION decode_passthru() 
  // see section 12.4,Pass-through decoding  
  .... 
 
// -------------------------------------- 
// decode one bit using context i 
// out of an array of 260 arithmetic contexts // initialized to zero 
before decoding the first block. 
 
FUNCTION decode( i:integer ) 
  // see section 12.4,Decoding 
  .... 
 
// -------------------------------------- 
// decode a b-bit integer using the pass-thru encoder 
 
FUNCTION decode_raw( b:integer ) 
  var n: integer 
  n := 1 
  while n < (2^b) 
      n := (n*2) + decode_passthru() 
  return n - (2^b) 
 
// -------------------------------------- 
// decode a b-bit integer using 2^b-1 arithmetic // contexts 
k[cxoffset] to k[cxoffset+2^b-2] 
 
FUNCTION decode_bin(cxoffset, b) 
  var n: integer 
  n := 1 
  while n < (2^b) 
      n := (n*2) + decode(cxoffset+n-1) 
  return n - (2^b) 

13.2.1.2 Decode a block 
// -------------------------------------- 
// decode a data block from a bzz encoded file 
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FUNCTION decode_block 
 
   var blocksize : integer 
       markerpos : integer 
       mtf       : array [0..255] of bytes 
       data      : array [0..blocksize-1] of byte 
       fshift    : integer  
       fadd      : integer  
       mtfno     : integer  
       freq      : array [0..3] of integer 
       posn      : array [0..blocksize-1] of integer 
       posc      : array [0..blocksize-1] of byte 
       count     : array [0..255] of integer 
       last      : integer 
       k         : integer 
 
   /////// PHASE1 - arithmetic decoding 
 
   // decode block size 
   blocksize := decode_raw(24); 
 
   // decode estimation speed 
   fshift := 0 
   if (decode_passthru()) 
      if (decode_passthru()) 
        fshift := 2; 
      else 
        fshift := 1; 
 
   // fill mtf array 
   for i:= 0 to 255  
     mtf[i] = i 
 
   // decode 
   mtfno := 3 
   markerpos := -1  
   fadd := 4; 
   for i:=0 to 3 
      freq[i] = 0; 
 
   for i := 0 to blocksize - 1 
      var ctxid  : integer 
          fc     : integer 
 
      if (mtfno <= ctxid) 
         ctxid = mtfno 
      else 
         ctxid := 2 
 
      assert( ctxid=0 or ctxid=1 or ctxid=2 ) 
 
      if (decode(ctxid)) 
         mtfno := 0; 
         data[i] := mtf[mtfno]; 
      else if (decode(ctxid+3)) 
         mtfno := 1; 
         data[i] := mtf[mtfno]; 
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      else if (decode(6)) 
         mtfno := 2 + decode_bin(7, 1); 
         data[i] := mtf[mtfno]; 
      else if (decode(8)) 
         mtfno := 4 + decode_bin(9, 2); 
         data[i] := mtf[mtfno]; 
      else if (decode(12)) 
         mtfno := 8 + decode_bin(13, 3); 
         data[i] := mtf[mtfno]; 
      else if (decode(20)) 
         mtfno := 16 + decode_bin(21, 4); 
         data[i] := mtf[mtfno]; 
      else if (decode(36)) 
         mtfno := 32 + decode_bin(37, 5); 
         data[i] := mtf[mtfno]; 
      else if (decode(68)) 
         mtfno := 64 + decode_bin(69, 6); 
         data[i] := mtf[mtfno]; 
      else if (decode(132)) 
         mtfno := 128 + decode_bin(133, 7); 
         data[i] := mtf[mtfno]; 
      else 
         mtfno := 256;   // EOB symbol 
         data[i] := 0;    
         markerpos := i; 
       
      if mtfno < 256 
        // update frequencies 
        fadd := fadd + shiftright(fadd, fshift) 
        if (fadd > 0x10000000) 
          fadd = shiftright(fadd, 24) 
          for j:=0 to 3 
            freq[j] = shiftright(freq[j], 24) 
        if  (mtfno < 4) 
           fc := fadd + freq[mtfno] 
        else 
           fc := fadd 
 
        // rotate mtf 
        k := mtfno 
        while k > 3 
          mtf[k] := mtf[k-1] 
          k := k - 1 
        while k > 0 and fc>=freq[k-1] 
          mtf[k] := mtf[k-1] 
          freq[j] := freq[k-1] 
          k := k - 1 
        mtf[k] := data[i] 
        freq[k] := fc 

13.2.1.3 Reverse Burrows Wheeler Transform 
   /////// PHASE2 - inverse burrows wheeler transform 
  
   assert( markerpos>0 and markerpos<blocksize ) 
  
   for i := 0 to 255 
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     count[i] := 0 
   for i := 0 to blocksize-1 
     k := data[i] 
     posc[i] := k 
     if i = markerpos 
       posn[i] := 0 
     else 
       posn[i] := count[k] 
       count[k] := count[k] + 1 
 
   last := 1 
   for i := 0 to 255 
     k := count[i] 
     count[i] := last 
     last := last + k 
    
   assert( last = blocksize )  
 
   k := 0 
   last := blocksize -1 
   while last > 0 
     last := last - 1 
     data[last] := posc[k] 
     k := count[posc[k]] + posn[k] 
    
   assert(k = markerpos) 
 
   /////// FIN -  return blocksize-1 decoded bytes 
   return data[0 ... blocksize-2] 

13.2.2 Notes 

13.2.2.1 Overview of decoding a block 
For each block, one must decode 

• the blocksize (with decode_raw) 

• the estimation speed FSHIFT=0,1,2 (two bits with the passthru decoder) 

• the sequence of symbols representing the Burrows-Wheeler transform of the 
block. At this point, the sequence of symbols is logically encoded as a sequence 
of numbers representing the position of each symbol in the MTF array. 

Then one must perform the inverse Burrows-Wheeler transform to recover the decoded 
block. 

The following points are significant when recovering the BWT and discussed below: 

• The MTF array is reordered after decoding each number. 

• The numbers themselves are arithmetically encoded. 

13.2.2.2 MTF array reordering: 
The MTF array contains 256 bytes initialized with the identity mapping, that is 
MTF[0]=0, MTF[1]=1, ... MTF[255]=255. 
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Whenever one decodes a number MTFNO, the corresponding symbol to store in the 
Burrows-Wheeler buffer is MTF[MTFNO] (except, for the EOB symbol – see 13.2.2.3 
Decoding the number MTFNO) and the contents of the MTF array are rotated. The 
rotation moves the symbol that was at position MTF[MTFNO] to a position M that can 
be 0, 1, 2, or 3.  Meanwhile the symbols MTF[M] to MTF[MTFNO-1] are moved to 
positions M+1 to MTFNO. 

The position M is chosen using an estimate of the frequency of the symbol 
MTF[MTFNO].  One strives to position the most frequent symbols at the beginning of 
the MTF array.  To that end, one maintains an array FREQ[0..3] that contains numbers 
representative of the instantaneous frequencies of the symbols MTF[0...3]. 

Of course this array must also be "rotated" when the rotation of the MTF array affects its 
first four elements. 

Consider the frequency F(T) of a particular symbol S measured after decoding the T-th 
symbol.  Ideally, 

F(T) = λ* F(T-1) + D 

Where 

0 < λ <= 1.  This models how quickly one forgets past information and 

D=1 if the T-th symbol is S, and D=0 otherwise.  This allows F(T) to grow 
each time the symbol S occurs 

To avoid multiplying all the frequencies by λ, the FREQ array contains instead  

G(T) = F(T) / λT  

It is then easy to see that  

G(T) = G(T-1) + D / λT. 

Therefore we only need to update the G corresponding to the symbol being decoded (i.e. 
D=1), since the G for the other symbols does not change. 

A dedicated variable FADD contains λT.  Before each rotation we divide FADD by λT.  
This is accomplished by the line 

   FADD = FADD + SHIFTRIGHT(FADD, FSHIFT) 

The values 0, 1 or 2 of variable FSHIFT correspond the λ = 1/2, 2/3 or 4/5.  To avoid 
overflows we divide everything (FADD and FREQ[0..3]) by 0x10000000 whenever 
FADD becomes bigger than 0x10000000.  This happens rarely enough to take very little 
time. 

The G(T) of the freshly decoded symbol is therefore G(T-1) + FADD.  We can only 
compute this exactly when S is one of the first four symbols of the MTF because we only 
store FREQ[0..3].  If the decoded number MTFNO is greater than 3, we assume that G(T-
1)=0 simply consider G(T)=FADD. 

The number M is then chosen to make sure the array FREQ remains sorted in decreasing 
order after the rotation. 
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13.2.2.3 Decoding the number MTFNO 
Now we can discuss how the numbers MTFNO are stored.  There are 262 arithmetic 
coding contexts.  These are initialized to zero at the beginning of the stream decoding 
process.  They should not be reset to zero at the beginning of the block decoding process. 

Because the most frequently used symbols should appear near the front of the array, we 
expect small values for MTFNO (the index into MTF array).  By design, the number of 
bits and the number of contexts required to decode increases for larger values of 
MTFNO: 

A first bit is decoded using context 0, 1 or 2. 

Context 0 or 1 are used if the previous MTFNO was 0 or 1. Otherwise context 2 is 
used, If this bit is set, the new MTFNO is 0. 

Otherwise a second bit is decoded using context 3, 4, or 5.  Context 3 or 4 are 
used if the previous MTFNO was 0 or 1. Otherwise context 5 is used.  If this bit is 
set, the new MTFNO is 1 

Otherwise a third bit is decoded using context 6.  If this bit is set, the new 
MTFNO is obtained by adding 2 to a 1 bit number decoded with DECODE_BIN 
using context 7. 

Otherwise a fourth bit is decoded using context 8.  If this bit is set, the new 
MTFNO is obtained by adding 4 to a 2 bit number decoded with DECODE_BIN 
using context 9..11. 

And so forth until … 

Otherwise a ninth bit is decoded using context 132.  If this bit is set, the new 
MTFNO is obtained by adding 128 to a 7 bit number decoded with 
DECODE_BIN using context 133..261. 

Otherwise the next symbol is the EOB symbol.  Since there is only one EOB 
symbol, we store a zero in the Burrows-Wheeler buffer and record its position in 
variable MARKERPOS. 

13.2.2.4 Inverse Burrows-Wheeler transform 
After decoding the BLOCKSIZE symbols composing the Burrows-Wheeler buffer, we 
need to perform the inverse Burrows-Wheeler transform to recover the BLOCKSIZE-1 
decoded bytes followed by the EOB symbol. 

To start, we 

• copy the buffer into an array POSC[0...BLOCKSIZE-1],  

• prepare an array COUNT[0..255] that counts how many occurences of each 
symbol are found,  

• prepare an array POSN[0..BLOCKSIZE-1] that indicates the rank of each 
occurence of a symbol in the buffer. 
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Imagine that we are sorting the buffer in symbol order (EOB being the smallest symbol). 
The buffer would be composed of a single EOB, followed by a run of COUNT[0] 
symbols 0, followed by a run of COUNT[1] symbols 1, etc.    

Using the COUNT array, we compute the position SORTEDPOS[0..255] of each run of 
symbol in this array. 

To perform the inverse Burrows-Wheeler transform, it is now sufficient to follow the 
thread backwards: 
   k := 0 

   last := blocksize -1 

   while last > 0 

     last := last - 1 

     data[last] := posc[k] 

     k := sortedpos[posc[k]] + posn[k] 

The array DATA[0...BLOCKSIZE-2] then contains the decoded bytes of the block. 


